上海市2009年高考模擬試題匯編

圓錐曲線

一、填空題

1、(2009上海青浦區(qū))已知是橢圓上的一個(gè)動(dòng)點(diǎn),則

試題詳情

的最大值是      

5

 

試題詳情

2、(2009閔行三中模擬)已知為雙曲線的右頂點(diǎn),F(xiàn)是雙曲線的右焦點(diǎn),則|AF|=_______。

1

 

試題詳情

3、(2009冠龍高級(jí)中學(xué)3月月考)以橢圓中心為頂點(diǎn),右頂點(diǎn)為焦點(diǎn)的拋物線的標(biāo)準(zhǔn)方程為_(kāi)____________。

 

試題詳情

4、(2009上海普陀區(qū))設(shè)聯(lián)結(jié)雙曲線,)的個(gè)頂點(diǎn)的四邊形面積為,聯(lián)結(jié)其個(gè)焦點(diǎn)的四邊形面積為,則的最大值為            .

試題詳情

試題詳情

5、(2009上海十四校聯(lián)考)以原點(diǎn)為頂點(diǎn),x軸為對(duì)稱(chēng)軸且焦點(diǎn)在6ec8aac122bd4f6e上的拋物線方程是        

試題詳情

6ec8aac122bd4f6e。

試題詳情

二、解答題

1、(2009上海十四校聯(lián)考)我們知道,判斷直線與圓的位置關(guān)系可以用圓心到直線的距離進(jìn)行判別,那么直線與橢圓的位置關(guān)系有類(lèi)似的判別方法嗎?請(qǐng)同學(xué)們進(jìn)行研究并完成下面問(wèn)題

試題詳情

   (1)設(shè)F1、F2是橢圓6ec8aac122bd4f6e的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線6ec8aac122bd4f6e的距離分別為d1、d2,試求d1?d2的值,并判斷直線L與橢圓M的位置關(guān)系

試題詳情

   (2)設(shè)F1、F2是橢圓6ec8aac122bd4f6e的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線

試題詳情

        6ec8aac122bd4f6em、n不同時(shí)為0)的距離分別為d1、d2,且直線L與橢圓M相切,試求d1?d2的值

   (3)試寫(xiě)出一個(gè)能判斷直線與橢圓的位置關(guān)系的充要條件,并證明

   (4)將(3)中得出的結(jié)論類(lèi)比到其它曲線,請(qǐng)同學(xué)們給出自己研究的有關(guān)結(jié)論(不必證明)

 

試題詳情

 解:(1)6ec8aac122bd4f6e; ………………2分

試題詳情

    聯(lián)立方程6ec8aac122bd4f6e; …………3分

試題詳情

    6ec8aac122bd4f6e與橢圓M相交 …………4分

試題詳情

   (2)聯(lián)立方程組6ec8aac122bd4f6e

    消去

試題詳情

6ec8aac122bd4f6e

試題詳情

   (3)設(shè)F1、F2是橢圓6ec8aac122bd4f6e的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線

試題詳情

    6ec8aac122bd4f6e的距離分別為d1、d2,且F1、F2在直線L的同側(cè)那么直線L與橢圓相交的充要條件為:6ec8aac122bd4f6e;直線L與橢圓M相切的充要條件為:6ec8aac122bd4f6e;直線L與橢圓M相離的充要條件為:6ec8aac122bd4f6e ……14分

試題詳情

    證明:由(2)得,直線L與橢圓M相交6ec8aac122bd4f6e

試題詳情

    6ec8aac122bd4f6e

    命題得證

   (寫(xiě)出其他的充要條件僅得2分,未指出“F1、F2在直線L的同側(cè)”得3分)

試題詳情

   (4)可以類(lèi)比到雙曲線:設(shè)F1、F2是雙曲線6ec8aac122bd4f6e的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線6ec8aac122bd4f6e距離分別為d1、d2,且F1、F2在直線L的同側(cè)。那么直線L與雙曲線相交的充要條件為:6ec8aac122bd4f6e;直線L與雙曲線M相切的充要條件為:6ec8aac122bd4f6e;直線L與雙曲線M相離的充要條件為:6ec8aac122bd4f6e

………………20分

   (寫(xiě)出其他的充要條件僅得2分,未指出“F1、F2在直線L的同側(cè)”得3分)

試題詳情

2、(2009上海盧灣區(qū)4月?迹┤鐖D,已知點(diǎn),動(dòng)點(diǎn)軸上,點(diǎn)

試題詳情

軸上,其橫坐標(biāo)不小于零,點(diǎn)在直線上,

試題詳情

且滿足.

試題詳情

 (1)當(dāng)點(diǎn)軸上移動(dòng)時(shí),求點(diǎn)的軌跡;

試題詳情

 (2)過(guò)定點(diǎn)作互相垂直的直線,

試題詳情

(1)中的軌跡交于、兩點(diǎn),與(1)中的軌跡交于兩點(diǎn),求四邊形面積的最小值;

 (3)(在下列兩題中,任選一題,寫(xiě)出計(jì)算過(guò)程,并求出結(jié)果,若同時(shí)選做兩題,

則只批閱第②小題,第①題的解答,不管正確與否,一律視為無(wú)效,不予批閱):

試題詳情

  ① (解答本題,最多得6分)將(1)中的曲線推廣為橢圓:,并

試題詳情

將(2)中的定點(diǎn)取為焦點(diǎn),求與(2)相類(lèi)似的問(wèn)題的解;

試題詳情

  ② (解答本題,最多得9分)將(1)中的曲線推廣為橢圓:,并

將(2)中的定點(diǎn)取為原點(diǎn),求與(2)相類(lèi)似的問(wèn)題的解.

試題詳情

解:(1)設(shè),易知,,由題設(shè),

試題詳情

其中,從而,,且

試題詳情

又由已知,得,

試題詳情

當(dāng)時(shí),,此時(shí),得,

試題詳情

,故,,即,

試題詳情

當(dāng)時(shí),點(diǎn)為原點(diǎn),軸,軸,點(diǎn)也為原點(diǎn),從而點(diǎn)也為原點(diǎn),因此點(diǎn)的軌跡的方程為,它表示以原點(diǎn)為頂點(diǎn),以為焦點(diǎn)的拋物線;                                         (4分)

試題詳情

(2)由題設(shè),可設(shè)直線的方程為,直線的方程為,又設(shè)、,

試題詳情

則由,消去,整理得,

試題詳情

,同理,                    (7分)

試題詳情

,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,因此四邊形面積的最小值為.     (9分)

試題詳情

  (3)①  當(dāng)時(shí)可設(shè)直線的方程為,

試題詳情

,得,

試題詳情

,,                     (12分)

試題詳情

,

試題詳情

當(dāng)且僅當(dāng)時(shí)等號(hào)成立.                                      (14分)

試題詳情

當(dāng)時(shí),易知,,得,故當(dāng)且僅當(dāng)時(shí)四邊形面積有最小值.                              (15分)

試題詳情

②  由題設(shè),可設(shè)直線的方程為,當(dāng)時(shí),由,

試題詳情

消去,整理得,得,

試題詳情

同理,                                    (12分)

試題詳情

,其中,

試題詳情

若令,則由

試題詳情

,其中,即,故當(dāng)且僅當(dāng),即時(shí),有最大值,由,得有最小值,故當(dāng)且僅當(dāng)時(shí),四邊形面積有最小值為.       (17分)

試題詳情

 又當(dāng)時(shí),,,此時(shí),由,得當(dāng)且僅當(dāng)時(shí),四邊形面積有最小值為.      (18分)

 

試題詳情

3、(2009上海八校聯(lián)考)已知雙曲線的漸近線方程為,左焦點(diǎn)為F,過(guò)的直線為,原點(diǎn)到直線的距離是

(1)求雙曲線的方程;

試題詳情

 (2)已知直線交雙曲線于不同的兩點(diǎn)C,D,問(wèn)是否存在實(shí)數(shù),使得以CD為直徑的圓經(jīng)過(guò)雙曲線的左焦點(diǎn)F。若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由

試題詳情

解:(1)∵                      2分

試題詳情

原點(diǎn)到直線AB:的距離,  4分

試題詳情

  故所求雙曲線方程為         6分

試題詳情

(2)把中消去y,整理得 .                    8分

試題詳情

設(shè),則

試題詳情

 

試題詳情

因?yàn)橐訡D為直徑的圓經(jīng)過(guò)雙曲線的左焦點(diǎn)F,所以 ,   10分

試題詳情

可得     把代入,

試題詳情

解得:                      13分

試題詳情

,得,滿足,14分

 

試題詳情

4、(2009上海奉賢區(qū)模擬考)已知:點(diǎn)P與點(diǎn)F(2,0)的距離比它到直線+4=0的距離小2,若記點(diǎn)P的軌跡為曲線C。

(1)求曲線C的方程。

(2)若直線L與曲線C相交于A、B兩點(diǎn),且OA⊥OB。求證:直線L過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo)。

試題詳情

(3)試?yán)盟鶎W(xué)圓錐曲線知識(shí)參照(2)設(shè)計(jì)一個(gè)與直線過(guò)定點(diǎn)有關(guān)的數(shù)學(xué)問(wèn)題,并解答所提問(wèn)題。

試題詳情

(1)解法(A):點(diǎn)P與點(diǎn)F(2,0)的距離比它到直線+4=0的距離小2,所以點(diǎn)P與點(diǎn)F(2,0)的距離與它到直線+2=0的距離相等。              ----(1分)

試題詳情

由拋物線定義得:點(diǎn)在以為焦點(diǎn)直線+2=0為準(zhǔn)線的拋物線上,          ----(1分)

試題詳情

拋物線方程為。                             ----(2分) 

試題詳情

解法(B):設(shè)動(dòng)點(diǎn),則。當(dāng)時(shí),,化簡(jiǎn)得:,顯然,而,此時(shí)曲線不存在。當(dāng)時(shí),,化簡(jiǎn)得:。

試題詳情

(2)

試題詳情

,

試題詳情

,               ----(1分)

試題詳情

,

試題詳情

,即,,           ----(2分)

試題詳情

直線為,所以                      ----(1分)

試題詳情

試題詳情

                         ----(1分)

試題詳情

由(a)(b)得:直線恒過(guò)定點(diǎn)。                        ----(1分)

試題詳情

1、(逆命題)如果直線,且與拋物線相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn)。求證:OA⊥OB    (評(píng)分:提出問(wèn)題得1分,解答正確得1分)

試題詳情

(若,求證:?=0,得分相同)

試題詳情

2、(簡(jiǎn)單推廣命題)如果直線L與拋物線=2px(p>0)相交于A、B兩點(diǎn),且OA⊥OB。求證:直線L過(guò)定點(diǎn)(2p,0)

或:它的逆命題(評(píng)分:提出問(wèn)題得2分,解答正確得1分)

試題詳情

3、(類(lèi)比)

試題詳情

3.1(1)如果直線L與橢圓=1(a>b>0)相交于A、B兩點(diǎn),M是其右頂點(diǎn),當(dāng)MA⊥MB。求證:直線L過(guò)定點(diǎn)(,0)

試題詳情

3.1(2)如果直線L與橢圓=1(a>b>0)相交于A、B兩點(diǎn),M是其左頂點(diǎn),當(dāng)MA⊥MB。求證:直線L過(guò)定點(diǎn)(,0)

試題詳情

3.1(3)或它的逆命題

試題詳情

3.2(1)如果直線L與雙曲線=1(a>0,b>0)相交于A、B兩點(diǎn),M是其右頂點(diǎn),當(dāng)MA⊥MB。求證:直線L過(guò)定點(diǎn)(,0)(a≠b)

試題詳情

3.2(2)如果直線L與雙曲線=1(a>0,b>0)相交于A、B兩點(diǎn),M是其左頂點(diǎn),當(dāng)MA⊥MB。求證:直線L過(guò)定點(diǎn)(,0)(a≠b)

試題詳情

3.2(3)或它的逆命題

(評(píng)分:提出問(wèn)題得3分,解答正確得3分)

試題詳情

4、(再推廣)

直角頂點(diǎn)在圓錐曲線上運(yùn)動(dòng)

試題詳情

如:如果直線L與拋物線=2px(p>0)相交于A、B兩點(diǎn),P是拋物線上一定點(diǎn)(,),且PA⊥PB。求證:直線L過(guò)定點(diǎn)(+2p,-)

(評(píng)分:提出問(wèn)題得4分,解答正確得3分)

試題詳情

5、(再推廣)

試題詳情

如果直線L與拋物線=2px(p>0)相交于A、B兩點(diǎn),P是拋物線上一定點(diǎn)(,),PA與PB的斜率乘積是常數(shù)m。求證:直線L過(guò)定點(diǎn)(,-)

(評(píng)分:提出問(wèn)題得5分,解答正確得4分)

 

試題詳情

?為常數(shù)

試題詳情

頂點(diǎn)在圓錐曲線上運(yùn)動(dòng)并把直角改為一般定角或OA與OB的斜率乘積是常數(shù)或?為常數(shù)

 

試題詳情

5、(2009冠龍高級(jí)中學(xué)3月月考)雙曲線上一點(diǎn)到左,右兩焦點(diǎn)距離的差為2.

(1)求雙曲線的方程;

試題詳情

(2)設(shè)是雙曲線的左右焦點(diǎn),是雙曲線上的點(diǎn),若

試題詳情

的面積;

試題詳情

(3)過(guò)作直線交雙曲線兩點(diǎn),若,是否存在這樣的直線,使為矩形?若存在,求出的方程,若不存在,說(shuō)明理由.

試題詳情

(1)

試題詳情

(2)      妨設(shè)在第一象限,則

試題詳情

試題詳情

(3)若直線斜率存在,設(shè)為,代入

試題詳情

試題詳情

若平行四邊形為矩形,則

試題詳情

無(wú)解

試題詳情

若直線垂直軸,則不滿足.

試題詳情

故不存在直線,使為矩形.

試題詳情

6、(2009上海青浦區(qū))已知是拋物線上的相異兩點(diǎn).

試題詳情

(1)設(shè)過(guò)點(diǎn)且斜率為-1的直線,與過(guò)點(diǎn)且斜率1的直線相交于點(diǎn)P(4,4),求直線AB的斜率;

(2)問(wèn)題(1)的條件中出現(xiàn)了這樣的幾個(gè)要素:已知圓錐曲線G,過(guò)該圓錐曲線上的

試題詳情

相異兩點(diǎn)A、B所作的兩條直線相交于圓錐曲線G上一點(diǎn);結(jié)論是關(guān)于直線AB的斜率的值.請(qǐng)你對(duì)問(wèn)題(1)作適當(dāng)推廣,并給予解答;

試題詳情

(3)線段AB(不平行于軸)的垂直平分線與軸相交于點(diǎn).若,試用線段AB中點(diǎn)的縱坐標(biāo)表示線段AB的長(zhǎng)度,并求出中點(diǎn)的縱坐標(biāo)的取值范圍.

試題詳情

(1)由解得;由解得

試題詳情

由點(diǎn)斜式寫(xiě)出兩條直線的方程,,

試題詳情

所以直線AB的斜率為.                                   ……4分

(2)推廣的評(píng)分要求分三層

一層:點(diǎn)P到一般或斜率到一般,或拋物線到一般(3分,問(wèn)題1分、解答2分)

試題詳情

例:1.已知是拋物線上的相異兩點(diǎn).設(shè)過(guò)點(diǎn)且斜率為-1的直線,與過(guò)點(diǎn)且斜率為1的直線相交于拋物線上的一定點(diǎn)P,求直線AB的斜率;

試題詳情

2.已知是拋物線上的相異兩點(diǎn).設(shè)過(guò)點(diǎn)且斜率為-k 1的直線,與過(guò)點(diǎn)且斜率為k的直線相交于拋物線上的一點(diǎn)P(4,4),求直線AB的斜率;

試題詳情

3.已知是拋物線上的相異兩點(diǎn).設(shè)過(guò)點(diǎn)且斜率為-1的直線,與過(guò)點(diǎn)且斜率為1的直線相交于拋物線上的一定點(diǎn)P,求直線AB的斜率; AB的斜率的值.

二層:兩個(gè)一般或推廣到其它曲線(4分,問(wèn)題與解答各占2分)

試題詳情

例:4.已知點(diǎn)R是拋物線上的定點(diǎn).過(guò)點(diǎn)P作斜率分別為、的兩條直線,分別交拋物線于A、B兩點(diǎn),試計(jì)算直線AB的斜率.

三層:滿分(對(duì)拋物線,橢圓,雙曲線或?qū)λ袌A錐曲線成立的想法.)(7分,問(wèn)題3分、解答4分)

試題詳情

例如:5.已知拋物線上有一定點(diǎn)P,過(guò)點(diǎn)P作斜率分別為、的兩條直線,分別交拋物線于A、B兩點(diǎn),試計(jì)算直線AB的斜率.

試題詳情

過(guò)點(diǎn)P(),斜率互為相反數(shù)的直線可設(shè)為,,其中。

試題詳情

 由,所以

試題詳情

試題詳情

同理,把上式中換成,所以

試題詳情

當(dāng)P為原點(diǎn)時(shí)直線AB的斜率不存在,當(dāng)P不為原點(diǎn)時(shí)直線AB的斜率為。

試題詳情

(3)(理)點(diǎn),設(shè),則

試題詳情

設(shè)線段的中點(diǎn)是,斜率為,則=.12分

試題詳情

所以線段的垂直平分線的方程為

試題詳情

又點(diǎn)在直線上,所以,而,于是.                                                       ……13分

試題詳情

 (斜率,則--------------------------------13分)

試題詳情

線段所在直線的方程為,                  ……14分

試題詳情

代入,整理得               ……15分

試題詳情

。設(shè)線段長(zhǎng)為,則

試題詳情

=

試題詳情

                               ……16分

試題詳情

因?yàn)?sub>,所以                ……18分

試題詳情

即:.()   

 

試題詳情

(文)設(shè),則.               ……13分

試題詳情

設(shè)線段的中點(diǎn)是,斜率為,則=,……15分

試題詳情

線段的垂直平分線的方程為,             ……17分

試題詳情

又點(diǎn)在直線上,所以

試題詳情

,于是.故線段AB中點(diǎn)的橫坐標(biāo)為.   ……18分

 

試題詳情

7、(2009上海十校聯(lián)考)已知等軸雙曲線的兩個(gè)焦點(diǎn)、在直線上,線段的中點(diǎn)是坐標(biāo)原點(diǎn),且雙曲線經(jīng)過(guò)點(diǎn)

試題詳情

(1)      若已知下列所給的三個(gè)方程中有一個(gè)是等軸雙曲線的方程:①;②;③.請(qǐng)確定哪個(gè)是等軸雙曲線的方程,并求出此雙曲線的實(shí)軸長(zhǎng);

試題詳情

(2)      現(xiàn)要在等軸雙曲線上選一處建一座碼頭,向、兩地轉(zhuǎn)運(yùn)貨物.經(jīng)測(cè)算,從、從修建公路的費(fèi)用都是每單位長(zhǎng)度萬(wàn)元,則碼頭應(yīng)建在何處,才能使修建兩條公路的總費(fèi)用最低?

試題詳情

(3)      如圖,函數(shù)的圖像也是雙曲線,請(qǐng)嘗試研究此雙曲線的性質(zhì),你能得到哪些結(jié)論?(本小題將按所得到的雙曲線性質(zhì)的數(shù)量和質(zhì)量酌情給分)

試題詳情

【解】(1)雙曲線的焦點(diǎn)在軸上,所以①不是雙曲線的方程……1分

試題詳情

       雙曲線不經(jīng)過(guò)點(diǎn),所以②不是雙曲線的方程           …… 2分

試題詳情

        所以③是等軸雙曲線的方程                             …… 3分

試題詳情

        等軸雙曲線的焦點(diǎn)、在直線上,所以雙曲線的頂點(diǎn)也在直線上,                                                            …… 4分

試題詳情

聯(lián)立方程,解得雙曲線的兩頂點(diǎn)坐標(biāo)為,,所以雙曲線的實(shí)軸長(zhǎng)為                                         …… 5分

試題詳情

(2)      所求問(wèn)題即為:在雙曲線求一點(diǎn),使最小.

試題詳情

首先,點(diǎn)應(yīng)該選擇在等軸雙曲線的中第一象限的那一支上     …… 6分

試題詳情

等軸雙曲線的的長(zhǎng)軸長(zhǎng)為,所以其焦距為

試題詳情

       又因?yàn)殡p曲線的兩個(gè)焦點(diǎn)、在直線上,線段的中點(diǎn)是原點(diǎn),所以的一個(gè)焦點(diǎn),                                           …… 7分

試題詳情

設(shè)雙曲線的另一個(gè)焦點(diǎn)為,由雙曲線的定義知:

試題詳情

所以,要求的最小值,只需求的最小值                                                                …… 8分

試題詳情

直線的方程為,所以直線與雙曲線在第一象限的交點(diǎn)為                                                             …… 9分

試題詳情

    所以碼頭應(yīng)在建點(diǎn)處,才能使修建兩條公路的總費(fèi)用最低       …… 10分

 

試題詳情

(3)① ,此雙曲線是中心對(duì)稱(chēng)圖形,對(duì)稱(chēng)中心是原點(diǎn);                                                  …… 1分

試題詳情

② 漸近線是.當(dāng)時(shí),當(dāng)無(wú)限增大時(shí),無(wú)限趨近于,無(wú)限趨近;當(dāng)無(wú)限增大時(shí),無(wú)限趨近于.      …… 2分

試題詳情

③ 雙曲線的對(duì)稱(chēng)軸是.                             …… 3分

試題詳情

④ 雙曲線的頂點(diǎn)為,,實(shí)軸在直線上,實(shí)軸長(zhǎng)為                                                                 …… 4分

試題詳情

⑤虛軸在直線,虛軸長(zhǎng)為                                 …… 5分

試題詳情

⑥焦點(diǎn)坐標(biāo)為,,焦距                     …… 6分

說(shuō)明:(i)若考生能把上述六條雙曲線的性質(zhì)都寫(xiě)出,建議此小題給滿分8分

試題詳情

(ii)若考生未能寫(xiě)全上述六條雙曲線的性質(zhì),但是給出了的一些函數(shù)性質(zhì)(諸如單調(diào)性、最值),那么這些函數(shù)性質(zhì)部分最多給1分

試題詳情

8、(2009上海九校聯(lián)考)如圖,已知橢圓的焦點(diǎn)和上頂點(diǎn)分別為、,

試題詳情

我們稱(chēng)為橢圓的特征三角形.如果兩個(gè)橢圓的         特征三角形是相似的,

則稱(chēng)這兩個(gè)橢圓是“相似橢圓”,且三角形的相似比即為 橢圓的相似比.

試題詳情

(1)已知橢圓,

試題詳情

判斷是否相似,

試題詳情

如果相似則求出的相似比,若不相似請(qǐng)說(shuō)明理由;

試題詳情

(2)已知直線,與橢圓相似且半短軸長(zhǎng)為的橢圓的方程,

試題詳情

在橢圓上是否存在兩點(diǎn)關(guān)于直線對(duì)稱(chēng),

試題詳情

若存在,則求出函數(shù)的解析式.

試題詳情

(3)根據(jù)與橢圓相似且半短軸長(zhǎng)為的橢圓的方程,提出你認(rèn)為有價(jià)值的  

相似橢圓之間的三種性質(zhì)(不需證明);

解:

試題詳情

解:(1)橢圓相似. ………2分

試題詳情

因?yàn)?sub>的特征三角形是腰長(zhǎng)為4,底邊長(zhǎng)為的等腰三角形,

試題詳情

而橢圓的特征三角形是腰長(zhǎng)為2,底邊長(zhǎng)為的等腰三角形,

試題詳情

因此兩個(gè)等腰三角形相似,且相似比為   ……… 6分

                                                                     

試題詳情

(2)橢圓的方程為:.        ………8分

試題詳情

假定存在,則設(shè)、所在直線為,中點(diǎn)為.

試題詳情

.       ………10分

試題詳情

所以.

試題詳情

中點(diǎn)在直線上,所以有.         ………12分

試題詳情

.

試題詳情

.     ………14分

試題詳情

(3)橢圓的方程為:.        

兩個(gè)相似橢圓之間的性質(zhì)有:                          寫(xiě)出一個(gè)給2分

①     兩個(gè)相似橢圓的面積之比為相似比的平方;

②     分別以兩個(gè)相似橢圓的頂點(diǎn)為頂點(diǎn)的四邊形也相似,相似比即為橢圓的相似比;

③     兩個(gè)相似橢圓被同一條直線所截得的線段中點(diǎn)重合;

過(guò)原點(diǎn)的直線截相似橢圓所得線段長(zhǎng)度之比恰為橢圓的相似比.   ………20分

 

試題詳情


同步練習(xí)冊(cè)答案