相關習題
 0  365289  365297  365303  365307  365313  365315  365319  365325  365327  365333  365339  365343  365345  365349  365355  365357  365363  365367  365369  365373  365375  365379  365381  365383  365384  365385  365387  365388  365389  365391  365393  365397  365399  365403  365405  365409  365415  365417  365423  365427  365429  365433  365439  365445  365447  365453  365457  365459  365465  365469  365475  365483  366461 

科目: 來源: 題型:

【題目】某商場同時購進甲、乙兩種商品共100件,其進價和售價如下表:

商品名稱

進價(/)

40

90

售價(/)

60

120

設其中甲種商品購進x件,商場售完這100件商品的總利潤為y元.

()寫出y關于x的函數(shù)關系式;

()該商場計劃最多投入8000元用于購買這兩種商品,

①至少要購進多少件甲商品?

②若銷售完這些商品,則商場可獲得的最大利潤是多少元?

查看答案和解析>>

科目: 來源: 題型:

【題目】有四張正面分別標有數(shù)字﹣1,0,1,2的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上洗均勻.

(1)隨機抽取一張卡片,求抽到數(shù)字“﹣1”的概率;

(2)隨機抽取一張卡片,然后不放回,再隨機抽取一張卡片,請用列表或畫樹狀圖的方法求出第一次抽到數(shù)字“2”且第二次抽到數(shù)字“0”的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,對稱軸為直線x=﹣2的拋物線yx2+bx+cx軸交于A(5,0)B(1,0)兩點,與y軸相交于點C

1)求拋物線的解析式,并求出頂點坐標.

2)若點P在拋物線上,且SPOC4SBOC,求出點P的坐標.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了盡快實施脫貧致富奔小康宏偉意圖,某縣扶貧工作隊為朝陽溝村購買了一批蘋果樹苗和梨樹苗,已知一棵蘋果樹苗比一棵梨樹苗貴2元,購買蘋果樹苗的費用和購買梨樹苗的費用分別是3500元和2500元.

(1)若兩種樹苗購買的棵數(shù)一樣多,求梨樹苗的單價;

(2)若兩種樹苗共購買1100棵,且購買兩種樹苗的總費用不超過6000元,根據(jù)(1)中兩種樹苗的單價,求梨樹苗至少購買多少棵.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,點A是直線AM與⊙O的交點,點B在⊙O上,BDAM,垂足為D,BD與⊙O交于點COC平分∠AOB,∠B60°

1)求證:AM是⊙O的切線;

2)若⊙O的半徑為4,求圖中陰影部分的面積(結果保留π和根號).

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在矩形ABCD中,EAB邊的中點,沿EC對折矩形ABCD,使B點落在點P處,折痕為EC,連結AP并延長APCDF點,

1)求證:△CBE≌△CPE;

2)求證:四邊形AECF為平行四邊形;

3)若矩形ABCD的邊AB6BC4,求△CPF的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,矩形紙片ABCD,AB=4,BC=3,點PBC邊上,將CDP沿DP折疊,點C落在點E處,PE、DE分別交AB于點O、F,且OP=OF,則cosADF的值為(  )

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,二次函數(shù)y=x2+bx+c的圖象過點B(0,1)和C(4,3)兩點,與x軸交于點D、點E,過點B和點C的直線與x軸交于點A.

(1)求二次函數(shù)的解析式;

(2)在x軸上有一動點P,隨著點P的移動,存在點P使PBC是直角三角形,請你求出點P的坐標;

(3)若動點P從A點出發(fā),在x軸上沿x軸正方向以每秒2個單位的速度運動,同時動點Q也從A點出發(fā),以每秒a個單位的速度沿射線AC運動,是否存在以A、P、Q為頂點的三角形與ABD相似?若存在,直接寫出a的值;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】綜合與實踐:折紙中的數(shù)學

問題背景

在數(shù)學活動課上,老師首先將平行四邊形紙片ABCD按如圖①所示方式折疊,使點C與點A重合,點D落到D′處,折痕為EF.這時同學們很快證得:△AEF是等腰三角形.接下來各學習小組也動手操作起來,請你解決他們提出的問題.

操作發(fā)現(xiàn)

(1) “爭先”小組將矩形紙片ABCD按上述方式折疊,如圖②,發(fā)現(xiàn)重疊部分△AEF恰好是等邊三角形,求矩形ABCD的長、寬之比是多少?

實踐探究

(2)“勵志”小組將矩形紙片ABCD沿EF折疊,如圖③,使B點落在AD邊上的B′處;沿BG折疊,使D點落在D′處,且BD′過F點.試探究四邊形EFGB′是什么特殊四邊形?

(3)再探究:在圖③中連接BB′,試判斷并證明△BBG的形狀.

查看答案和解析>>

科目: 來源: 題型:

【題目】請閱讀下列材料,并完成相應的任務.

人類會作圓并且真正了解圓的性質是在2000多年前,由我國的墨子給出圓的概念:“一中同長也.”.意思說,圓有一個圓心,圓心到圓周的長都相等.這個定義比希臘數(shù)學家歐幾里得給圓下的定義要早100年.與圓有關的定理有很多,弦切角定理就是其中之一.

我們把頂點在圓上,一邊和圓相交,另一邊和圓相切的角叫做弦切角.

弦切角定理:弦切角的度數(shù)等于它所夾弧所對的圓周角度數(shù).

下面是弦切角定理的部分證明過程:

證明:如圖①,AB與⊙O相切于點A.當圓心O在弦AC上時,容易得到∠CAB90°,所以弦切角∠BAC的度數(shù)等于它所夾半圓所對的圓周角度數(shù).

如圖②,AB與⊙O相切于點A,當圓心O在∠BAC的內部時,過點A作直徑AD交⊙O于點D,在上任取一點E,連接ECED,EA,則∠CED=∠CAD

任務:

(1)請按照上面的證明思路,寫出該證明的剩余部分;

(2)如圖③,AB與⊙O相切于點A.當圓心O在∠BAC的外部時,請寫出弦切角定理的證明過程.

查看答案和解析>>

同步練習冊答案