科目: 來源: 題型:
【題目】如圖(1)已知矩形AOCD在平面直角坐標(biāo)系xOy中,∠CAO=60°,OA=2,B點的坐標(biāo)為(2,0),動點M以每秒2個單位長度的速度沿A→C→B運動(M點不與點A、點B重合),設(shè)運動時間為t秒.
(1)求經(jīng)過B、C、D三點的拋物線解析式;
(2)點P在(1)中的拋物線上,當(dāng)M為AC中點時,若△PAM≌△PDM,求點P的坐標(biāo);
(3)當(dāng)點M在CB上運動時,如圖(2)過點M作ME⊥AD,MF⊥x軸,垂足分別為E、F,設(shè)矩形AEMF與△ABC重疊部分面積為S,求S與t的函數(shù)關(guān)系式,并求出S的最大值;
(4)如圖(3)點P在(1)中的拋物線上,Q是CA延長線上的一點,且P、Q兩點均在第三象限內(nèi),Q、A是位于直線BP同側(cè)的不同兩點,若點P到x軸的距離為d,△QPB的面積為2d,求點P的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】金松科技生態(tài)農(nóng)業(yè)養(yǎng)殖有限公司種植和銷售一種綠色羊肚菌,已知該羊肚菌的成本是12元/千克,規(guī)定銷售價格不低于成本,又不高于成本的兩倍.經(jīng)過市場調(diào)查發(fā)現(xiàn),某天該羊肚菌的銷售量y(千克)與銷售價格x(元/千克)的函數(shù)關(guān)系如下圖所示:
(1)求y與x之間的函數(shù)解析式;
(2)求這一天銷售羊肚菌獲得的利潤W的最大值;
(3)若該公司按每銷售一千克提取1元用于捐資助學(xué),且保證每天的銷售利潤不低于3600元,問該羊肚菌銷售價格該如何確定.
查看答案和解析>>
科目: 來源: 題型:
【題目】在函數(shù)學(xué)習(xí)中,我們經(jīng)歷了“確定函數(shù)表達(dá)式﹣﹣利用函數(shù)圖象研究其性質(zhì)﹣﹣運用函數(shù)解決問題”的學(xué)習(xí)過程.在畫函數(shù)圖象時,我們通過描點或平移的方法畫出了所學(xué)的函數(shù)圖象.同時我們也學(xué)習(xí)了絕對值的意義,結(jié)合上面經(jīng)歷的學(xué)習(xí)過程,現(xiàn)在來解決下面的問題:在函數(shù)y=|kx﹣1|+b中,當(dāng)x=2時,y=﹣3;x=0時,y=﹣2.
(1)求這個函數(shù)的表達(dá)式;
(2)用列表描點的方法畫出該函數(shù)的圖象;請你先把下面的表格補充完整,然后在下圖所給的坐標(biāo)系中畫出該函數(shù)的圖象;
x | … | ﹣6 | ﹣4 | ﹣2 | 0 | 2 | 4 | 6 | … |
y | … |
| 0 | ﹣1 | ﹣2 | ﹣3 | ﹣2 |
| … |
(3)觀察這個函數(shù)圖象,并寫出該函數(shù)的一條性質(zhì);
(4)已知函數(shù)y= (x>0)的圖象如圖所示,與y=|kx﹣1|+b的圖象兩交點的坐標(biāo)分別是(2+4,-2),(2﹣2,﹣﹣1),結(jié)合你畫的函數(shù)圖象,直接寫出|kx﹣1|+b≤的解集.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點P,直線BF與AD延長線交于點F,且∠AFB=∠ABC.
(1)求證:直線BF是⊙O的切線;
(2)若CD=2,BP=1,求⊙O的半徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】市實驗中學(xué)計劃在暑假第二周的星期一至星期五開展暑假社會實踐活動,要求每位學(xué)生選擇兩天參加活動.
(1)甲同學(xué)隨機選擇連續(xù)的兩天,其中有一天是星期三的概率是 ;
(2)乙同學(xué)隨機選擇兩天,其中有一天是星期三的概率是多少?(列表或畫樹形圖或列舉)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線y=x2+(m+1)x﹣m﹣2(m>0)與x軸交于A、B兩點,與y軸交于點C,不論m取何正數(shù),經(jīng)過A、B、C三點的⊙P恒過y軸上的一個定點,則該定點的坐標(biāo)是_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+2x+3的圖象交x軸于點A、B(點A在點B的左側(cè)).若把點B向上平移m(m>0)個單位長度得點B1,若點B1向左平移n(n>0)個單位長度,將與該二次函數(shù)圖象上的點B2重合;若點B1向左平移(n+2)個單位長度,將與該二次函數(shù)圖象上的點B3重合.則n的值為( 。
A.1B.2C.3D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,等腰△ABC的頂角∠A=36°,若將其繞點C順時針旋轉(zhuǎn)36°,得到△,點B′在AB邊上,交AC于E,連接AA′.有下列結(jié)論:①△ABC≌△;②四邊形是平行四邊形;③圖中所有的三角形都是等腰三角形;其中正確的結(jié)論是( )
A.①②B.① ③C.②③D.① ② ③
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,二次函數(shù)的圖象與軸交于A、B兩點,與y軸交于點C,其中點B在x軸的正半軸上,點C在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程的兩個根,且A點坐標(biāo)為(-6,0).
(1)求此二次函數(shù)的表達(dá)式;
(2)若點E是線段AB上的一個動點(與點A、B不重合),過點E作EF∥AC交BC于點F,連接CE.設(shè)AE的長為m,△CEF的面積為s,求S與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)在(2)的基礎(chǔ)上試說明S是否存在最大值,若存在,請求出S的最大值,并求出此時點E的坐標(biāo),判斷此時△BCE的形狀;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com