科目: 來源: 題型:
【題目】設數(shù)列的前
項和為
,對任意
,點
都在函數(shù)
的圖象上.
(1)求,歸納數(shù)列
的通項公式(不必證明).
(2)將數(shù)列依次按
項、
項、
項、
項、
項循環(huán)地分為
,
,
,
,各個括號內各數(shù)之和,設由這些和按原來括號的前后順序構成的數(shù)列為
,求
的值.
(3)設為數(shù)列
的前
項積,若不等式
對一切
都成立,其中
,求
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的右焦點為
,且點
在橢圓C上.
(1)求橢圓C的標準方程;
(2)過橢圓上異于其頂點的任意一點Q作圓
的兩條切線,切點分別為
不在坐標軸上),若直線
在x軸,y軸上的截距分別為
,證明:
為定值;
(3)若是橢圓
上不同兩點,
軸,圓E過
,且橢圓
上任意一點都不在圓E內,則稱圓E為該橢圓的一個內切圓,試問:橢圓
是否存在過焦點F的內切圓?若存在,求出圓心E的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】大數(shù)據(jù)時代對于現(xiàn)代人的數(shù)據(jù)分析能力要求越來越高,數(shù)據(jù)擬合是一種把現(xiàn)有數(shù)據(jù)通過數(shù)學方法來代入某條數(shù)式的表示方式,比如,
,2,
,n是平面直角坐標系上的一系列點,用函數(shù)
來擬合該組數(shù)據(jù),盡可能使得函數(shù)圖象與點列
比較接近.其中一種描述接近程度的指標是函數(shù)的擬合誤差,擬合誤差越小越好,定義函數(shù)
的擬合誤差為:
.已知平面直角坐標系上5個點的坐標數(shù)據(jù)如表:
x | 1 | 3 | 5 | 7 | 9 |
y | 12 | 4 | 12 |
若用一次函數(shù)
來擬合上述表格中的數(shù)據(jù),求該函數(shù)的擬合誤差
的最小值,并求出此時的函數(shù)解析式
;
若用二次函數(shù)
來擬合題干表格中的數(shù)據(jù),求
;
請比較第
問中的
和第
問中的
,用哪一個函數(shù)擬合題目中給出的數(shù)據(jù)更好?
請至少寫出三條理由
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓,
、
為橢圓的左、右焦點,
為橢圓上一點,且
.
(1)求橢圓的標準方程;
(2)設直線,過點
的直線交橢圓于
、
兩點,線段
的垂直平分線分別交直線
、直線
于
、
兩點,當
最小時,求直線
的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)當時,求
的單調區(qū)間;
(2)若對于定義域內任意的,
恒成立,求
的取值范圍;
(3)記,若
在區(qū)間
內有兩個零點,求
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知動圓在圓
:
外部且與圓
相切,同時還在圓
:
內部與圓
相切.
(1)求動圓圓心的軌跡方程;
(2)記(1)中求出的軌跡為,
與
軸的兩個交點分別為
、
,
是
上異于
、
的動點,又直線
與
軸交于點
,直線
、
分別交直線
于
、
兩點,求證:
為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在等腰中,
,
,
分別為
,
的中點,
為
的中點,
在線段
上,且
。將
沿
折起,使點
到
的位置(如圖2所示),且
。
(1)證明:平面
;
(2)求平面與平面
所成銳二面角的余弦值
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從
開始計數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計公式分別為.]
(1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;
(2)試估計該公司投入萬元廣告費用之后,對應銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);
(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:
廣告投入 | 1 | 2 | 3 | 4 | 5 |
銷售收益 | 2 | 3 | 2 | 7 |
由表中的數(shù)據(jù)顯示, 與
之間存在著線性相關關系,請將(2)的結果填入空白欄,并求出
關于
的回歸直線方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com