科目: 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底,,為常數(shù)且)
(1)當時,討論函數(shù)在區(qū)間上的單調性;
(2)當時,若對任意的,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的離心率為,左、右焦點為,點在橢圓上,且點關于原點對稱,直線的斜率的乘積為.
(1)求橢圓的方程;
(2)已知直線經(jīng)過點,且與橢圓交于不同的兩點,若,判斷直線的斜率是否為定值?若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】每年六、七月份,我國長江中下游地區(qū)進入持續(xù)25天左右的梅雨季節(jié),如圖是江南某地區(qū)年10年間梅雨季節(jié)的降雨量單位:的頻率分布直方圖,試用樣本頻率估計總體概率,解答下列問題:
假設每年的梅雨季節(jié)天氣相互獨立,求該地區(qū)未來三年里至少有兩年梅雨季節(jié)的降雨量超過350mm的概率.
老李在該地區(qū)承包了20畝土地種植楊梅,他過去種植的甲品種楊梅,平均每年的總利潤為28萬元而乙品種楊梅的畝產(chǎn)量畝與降雨量之間的關系如下面統(tǒng)計表所示,又知乙品種楊梅的單位利潤為元,請你幫助老李分析,他來年應該種植哪個品種的楊梅可以使總利潤萬元的期望更大?并說明理由.
降雨量 | ||||
畝產(chǎn)量 | 500 | 700 | 600 | 400 |
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費對年銷售量(單位:t)的影響.該公司對近5年的年宣傳費和年銷售量數(shù)據(jù)進行了研究,發(fā)現(xiàn)年宣傳費x(萬元)和年銷售量y(單位:t)具有線性相關關系,并對數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計量的值.
(1)根據(jù)表中數(shù)據(jù)建立年銷售量y關于年宣傳費x的回歸方程;
(2)已知這種產(chǎn)品的年利潤z與x,y的關系為,根據(jù)(1)中的結果回答下列問題:
①當年宣傳費為10萬元時,年銷售量及年利潤的預報值是多少?
②估算該公司應該投入多少宣傳費,才能使得年利潤與年宣傳費的比值最大.
附:回歸方程中的斜率和截距的最小二乘估計公式分別為
參考數(shù)據(jù):.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C:+=1(a>b>0),且橢圓上的點到一個焦點的最短距離為b.
(1)求橢圓C的離心率;
(2)若點M(,)在橢圓C上,不過原點O的直線l與橢圓C相交于A,B兩點,與直線OM相交于點N,且N是線段AB的中點,求△OAB面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知p:-x2-2x+8≥0,q:x2-2x+1-m2≤0(m>0).
(1)若p是q的充分條件,求實數(shù)m的取值范圍;
(2)若“¬p”是“¬q”的充分條件,求實數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】若方程所表示的曲線為,則有以下幾個命題:
①當時,曲線表示焦點在軸上的橢圓;
②當時,曲線表示雙曲線;
③當時,曲線表示圓;
④存在,使得曲線為等軸雙曲線 .
以上命題中正確的命題的序號是_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】若函數(shù),當時,函數(shù)有極值.
(1)求函數(shù)的解析式;
(2)求函數(shù)的極值;
(3)若關于x的方程有三個零點,求實數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com