【題目】若函數(shù),當(dāng)時,函數(shù)有極值

1)求函數(shù)的解析式;

2)求函數(shù)的極值;

3)若關(guān)于x的方程有三個零點,求實數(shù)k的取值范圍.

【答案】1;(2)函數(shù)的極大值為:,函數(shù)的極小值為;(3.

【解析】

1)對函數(shù)進(jìn)行求導(dǎo),根據(jù)題意結(jié)合原函數(shù)的解析式和導(dǎo)函數(shù)的解析式進(jìn)行求解即可;

2)根據(jù)(1)所求的導(dǎo)函數(shù),判斷出函數(shù)的單調(diào)區(qū)間,最后根據(jù)極值的定義進(jìn)行求解即可;

3)把關(guān)于x的方程有三個零點,轉(zhuǎn)化成函數(shù)圖象的交點個數(shù)為3,根據(jù)(2)畫出函數(shù)的圖象和的圖象,利用數(shù)形結(jié)合進(jìn)行求解即可.

1,因為當(dāng)時,函數(shù)有極值,所以有;

2)由(1)可知;,令,得,

當(dāng)時,,因此函數(shù)單調(diào)遞增;

當(dāng)時,,因此函數(shù)單調(diào)遞減;

當(dāng)時,,因此函數(shù)單調(diào)遞增,所以當(dāng)時,函數(shù)有極大值,其值為,當(dāng)時,函數(shù)有極小值,其值為,因此函數(shù)的極大值為:,函數(shù)的極小值為;

3)因為關(guān)于x的方程有三個零點,所以函數(shù)的圖象和的圖象有3個交點,函數(shù)的圖象和的圖象如下所示:

因此由(2)所求的極值可知:當(dāng)時,函數(shù)的圖象和的圖象有3個交點,即關(guān)于x的方程有三個零點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓和直線 ,橢圓的離心率,坐標(biāo)原點到直線的距離為.

(Ⅰ)求橢圓的方程;

(Ⅱ)已知定點,若直線過點且與橢圓相交于兩點,試判斷是否存在直線,使以為直徑的圓過點?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在斜三棱柱中,,四邊形是菱形,.

(1)求證:;

(2)若平面平面,,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】考慮下面兩個定義域為(0,+∞)的函數(shù)fx)的集合:對任何不同的兩個正數(shù),都有,=對任何不同的兩個正數(shù),都有

1)已知,若,且,求實數(shù)的取值范圍

2)已知,的部分函數(shù)值由下表給出:

比較4的大小關(guān)系

3)對于定義域為的函數(shù),若存在常數(shù),使得不等式對任何都成立,則稱的上界,將中所有存在上界的函數(shù)組成的集合記作,判斷是否存在常數(shù),使得對任何,都有,若存在,求出的最小值,若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示.

1)求的值;

2)求上的最大值和最小值;

3)不畫圖,說明函數(shù)的圖象可由的圖象經(jīng)過怎樣變化得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】每年六、七月份,我國長江中下游地區(qū)進(jìn)入持續(xù)25天左右的梅雨季節(jié),如圖是江南某地區(qū)10年間梅雨季節(jié)的降雨量單位:的頻率分布直方圖,試用樣本頻率估計總體概率,解答下列問題:

假設(shè)每年的梅雨季節(jié)天氣相互獨立,求該地區(qū)未來三年里至少有兩年梅雨季節(jié)的降雨量超過350mm的概率.

老李在該地區(qū)承包了20畝土地種植楊梅,他過去種植的甲品種楊梅,平均每年的總利潤為28萬元而乙品種楊梅的畝產(chǎn)量與降雨量之間的關(guān)系如下面統(tǒng)計表所示,又知乙品種楊梅的單位利潤為,請你幫助老李分析,他來年應(yīng)該種植哪個品種的楊梅可以使總利潤萬元的期望更大?并說明理由.

降雨量

畝產(chǎn)量

500

700

600

400

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)求函數(shù)的極值;

(Ⅱ)若實數(shù)為整數(shù),且對任意的時,都有恒成立,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為拋物線的焦點,過點的直線與拋物線相交于兩點.

1)若,求此時直線的方程;

2)若與直線垂直的直線過點,且與拋物線相交于點、,設(shè)線段的中點分別為、,如圖,求證:直線過定點;

3)設(shè)拋物線上的點、在其準(zhǔn)線上的射影分別為,若的面積是的面積的兩倍,如圖,求線段中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家商場對同一種商品開展促銷活動,對購買該商品的顧客兩家商場的獎勵方案如下:

甲商場:顧客轉(zhuǎn)動如圖所示的圓盤,當(dāng)指針指向陰影部分(圖中兩個陰影部分均為扇形,且每個扇形的圓心角均為,邊界忽略不計)即為中獎.

乙商場:從裝有2個白球、2個藍(lán)球和2個紅球(這些球除顏色外完全相同)的盒子中一次性摸出2,若摸到的是2個相同顏色的球,則為中獎.

試問:購買該商品的顧客在哪家商場中獎的可能性大?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案