相關習題
 0  264377  264385  264391  264395  264401  264403  264407  264413  264415  264421  264427  264431  264433  264437  264443  264445  264451  264455  264457  264461  264463  264467  264469  264471  264472  264473  264475  264476  264477  264479  264481  264485  264487  264491  264493  264497  264503  264505  264511  264515  264517  264521  264527  264533  264535  264541  264545  264547  264553  264557  264563  264571  266669 

科目: 來源: 題型:

【題目】近年來,某市為促進生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設置了相應的垃圾箱.為調查居民生活垃圾分類投放情況,現(xiàn)隨機抽取了該市三類垃圾箱中總計1000t生活垃圾.經分揀以后數(shù)據(jù)統(tǒng)計如下表(單位:):根據(jù)樣本估計本市生活垃圾投放情況,下列說法錯誤的是(

廚余垃圾

可回收物

其他垃圾

廚余垃圾

400

100

100

可回收物

30

240

30

其他垃圾

20

20

60

A.廚余垃圾投放正確的概率為

B.居民生活垃圾投放錯誤的概率為

C.該市三類垃圾箱中投放正確的概率最高的是可回收物

D.廚余垃圾在廚余垃圾箱、可回收物箱、其他垃圾箱的投放量的方差為20000

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系中,已知曲線上的動點到點的距離與到直線的距離相等.

1)求曲線的軌跡方程;

2)過點分別作射線、交曲線于不同的兩點、,且以為直徑的圓經過點.試探究直線是否過定點?如果是,請求出該定點;如果不是,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),.

1)若,判斷的奇偶性,并說明理由;

2)若,求上的最小值;

3)若,,有三個不同實根,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為菱形且∠DAB=60°OAD中點.

(Ⅰ)若PA=PD,求證:平面POB⊥平面PAD

(Ⅱ)若平面PAD⊥平面ABCD,且PA=PD=AD=2,試問在線段PC上是否存在點M,使二面角M-BO-C的大小為30°,如存在,求的值,如不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在路邊安裝路燈:路寬米,燈桿長米,且與燈柱120°角,路燈采用錐形燈罩,燈罩軸線與燈桿垂直且正好通過道路路面的中線.

1)求燈柱高的長度(精確到0.01米);

2)若該路燈投射出的光成一個圓錐體,該圓錐體母線與軸線的夾角是30°,寫出路燈在路面上投射出的截面圖形的邊界是什么曲線?寫出其相應的幾何量(精確到0.01米).

查看答案和解析>>

科目: 來源: 題型:

【題目】在直三棱柱中,底面是直角三角形,,為側棱的中點.

(1)求異面直線所成角的余弦值;

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為α為參數(shù)),將C上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?/span>3倍,得曲線C1.以O為極點,x軸正半軸為極軸建立極坐標系.

1)求C1的極坐標方程

2)設M,NC1上兩點,若OMON,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】函數(shù)是定義在上的奇函數(shù),且為偶函數(shù),當時,,若有三個零點,則實數(shù)的取值集合是________.

查看答案和解析>>

科目: 來源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,,分組的頻率分布直方圖如圖.

1)求直方圖中的值;

2)求月平均用電量的眾數(shù)和中位數(shù);

3)在月平均用電量為,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應抽取多少戶?

查看答案和解析>>

科目: 來源: 題型:

【題目】若函數(shù)滿足:對于任意正數(shù),都有,且,則稱函數(shù)函數(shù)。

1)試判斷函數(shù)是否是函數(shù)并說明理由;

2)若函數(shù)函數(shù),求實數(shù)的取值范圍;

3)若函數(shù)函數(shù),且.

求證(;

)對任意,都有.

查看答案和解析>>

同步練習冊答案