科目: 來源: 題型:
【題目】如圖(1),在等腰直角中,斜邊
,D為
的中點(diǎn),將
沿
折疊得到如圖(2)所示的三棱錐
,若三棱錐
的外接球的半徑為
,則
_________.
圖(1) 圖(2)
查看答案和解析>>
科目: 來源: 題型:
【題目】十九世紀(jì)末,法國(guó)學(xué)者貝特朗在研究幾何概型時(shí)提出了“貝特朗悖論”,即“在一個(gè)圓內(nèi)任意選一條弦,這條弦的弦長(zhǎng)長(zhǎng)于這個(gè)圓的內(nèi)接等邊三角形邊長(zhǎng)的概率是多少?”貝特朗用“隨機(jī)半徑”、“隨機(jī)端點(diǎn)”、“隨機(jī)中點(diǎn)”三個(gè)合理的求解方法,但結(jié)果都不相同.該悖論的矛頭直擊概率概念本身,強(qiáng)烈地刺激了概率論基礎(chǔ)的嚴(yán)格化.已知“隨機(jī)端點(diǎn)”的方法如下:設(shè)A為圓O上一個(gè)定點(diǎn),在圓周上隨機(jī)取一點(diǎn)B,連接AB,所得弦長(zhǎng)AB大于圓O的內(nèi)接等邊三角形邊長(zhǎng)的概率.則由“隨機(jī)端點(diǎn)”求法所求得的概率為( �。�
A.B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】第三屆移動(dòng)互聯(lián)創(chuàng)新大賽,于2017年3月~10月期間舉行,為了選出優(yōu)秀選手,某高校先在計(jì)算機(jī)科學(xué)系選出一種子選手,再?gòu)娜U骷?/span>3位志愿者分別與
進(jìn)行一場(chǎng)技術(shù)對(duì)抗賽,根據(jù)以往經(jīng)驗(yàn),
與這三位志愿者進(jìn)行比賽一場(chǎng)獲勝的概率分別為
,且各場(chǎng)輸贏互不影響.
(1)求甲恰好獲勝兩場(chǎng)的概率;
(2)求甲獲勝場(chǎng)數(shù)的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列,其中
.
(1)若滿足
.
①當(dāng),且
時(shí),求
的值;
②若存在互不相等的正整數(shù),滿足
,且
成等差數(shù)列,求
的值.
(2)設(shè)數(shù)列的前
項(xiàng)和為
,數(shù)列
的前n項(xiàng)和為
,
,
,若
,
,且
恒成立,求
的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
.
(1)若,求
在
處的切線方程;
(2)若對(duì)于任意的正數(shù),
恒成立,求實(shí)數(shù)
的值;
(3)若函數(shù)存在兩個(gè)極值點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某小區(qū)內(nèi)有兩條互相垂直的道路與
,平面直角坐標(biāo)系
的第一象限有一塊空地
,其邊界
是函數(shù)
的圖象,前一段曲線
是函數(shù)
圖象的一部分,后一段
是一條線段.測(cè)得
到
的距離為8米,到
的距離為16米,
長(zhǎng)為20米.
(1)求函數(shù)的解析式;
(2)現(xiàn)要在此地建一個(gè)社區(qū)活動(dòng)中心,平面圖為梯形(其中
,
為兩底邊),問:梯形的高為多少米時(shí),該社區(qū)活動(dòng)中心的占地面積最大,并求出最大面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】某人某天的工作是駕車從地出發(fā),到
兩地辦事,最后返回
地,
,三地之間各路段行駛時(shí)間及擁堵概率如下表
路段 | 正常行駛所用時(shí)間(小時(shí)) | 上午擁堵概率 | 下午擁堵概率 |
1 | 0.3 | 0.6 | |
2 | 0.2 | 0.7 | |
3 | 0.3 | 0.9 |
若在某路段遇到擁堵,則在該路段行駛時(shí)間需要延長(zhǎng)1小時(shí).
現(xiàn)有如下兩個(gè)方案:
方案甲:上午從地出發(fā)到
地辦事然后到達(dá)
地,下午從
地辦事后返回
地;
方案乙:上午從地出發(fā)到
地辦事,下午從
地出發(fā)到達(dá)
地,辦完事后返回
地.
(1)若此人早上8點(diǎn)從地出發(fā),在各地辦事及午餐的累積時(shí)間為2小時(shí),且采用方案甲,求他當(dāng)日18點(diǎn)或18點(diǎn)之前能返回
地的概率.
(2)甲乙兩個(gè)方案中,哪個(gè)方案有利于辦完事后更早返回地?請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為
點(diǎn)
是橢圓上任意一點(diǎn),且
的最大值為4,橢圓
的離心率與雙曲線
的離心率互為倒數(shù).
(1)求橢圓方程;
(2)設(shè)點(diǎn),過點(diǎn)
作直線
與圓
相切且分別交橢圓于
,求直線
的斜率.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面多邊形中,四邊形
是邊長(zhǎng)為2的正方形,四邊形
為等腰梯形,
為
的中點(diǎn),
,現(xiàn)將梯形
沿
折疊,使平面
平面
.
(1)求證:面
;
(2)求與平面
成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com