【題目】在平面多邊形中,四邊形是邊長為2的正方形,四邊形為等腰梯形,的中點(diǎn), ,現(xiàn)將梯形沿折疊,使平面平面.

1)求證:

2)求與平面成角的正弦值.

【答案】(1)證明見解析;(2).

【解析】

(1)連接,得到四邊形為菱形,從而,再由平面平面,證得,得到平,證得,利用線面垂直的判定定理,即可得到平面.

(2)取的中點(diǎn),連接,證得,以為原點(diǎn)軸,軸建系,結(jié)合向量的夾角公式,即可求解.

(1)連接,由已知得,

可得四邊形為菱形,故

又因?yàn)槠矫?/span>平面,且交線為,可得,

由線面垂直的判定定理,可得平面,

又由平面,所以,

又由,所以平面.

(2)取的中點(diǎn),連接,則,過,則,以為原點(diǎn)軸,軸,軸建系,

,

可得

設(shè)面的法向量,

,令,可得,

,

即直線與平面所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)為別為、,且過點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)如圖,點(diǎn)為橢圓上一動(dòng)點(diǎn)(非長軸端點(diǎn)),的延長線與橢圓交于點(diǎn),的延長線與橢圓交于點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),判斷是否是函數(shù)的極值點(diǎn),并說明理由;

2)當(dāng)時(shí),不等式恒成立,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)在三棱錐中,底面,且三棱錐的每個(gè)頂點(diǎn)都在球的表面上,則球的表面積為 _______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正項(xiàng)數(shù)列的前項(xiàng)和為,,且,為常數(shù)).

1)求證:數(shù)列為等比數(shù)列;

2)若,且,對(duì)任意,都有,求的值;

3)若,是否存在正整數(shù),且,使得,三項(xiàng)成等比數(shù)列?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列,其中

(1)若滿足

①當(dāng),且時(shí),求的值;

②若存在互不相等的正整數(shù),滿足,且成等差數(shù)列,求的值

(2)設(shè)數(shù)列的前項(xiàng)和為,數(shù)列的前n項(xiàng)和為,,,,且恒成立,求的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)P是直線上一點(diǎn),過點(diǎn)P分別作拋物線的兩條切線,其中A、B為切點(diǎn).

1)若點(diǎn)A的坐標(biāo)為,求點(diǎn)P的橫坐標(biāo);

2)當(dāng)的面積為時(shí),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20197月,中國良渚古城遺址獲準(zhǔn)列入世界遺產(chǎn)名錄,標(biāo)志著中華五千年文明史得到國際社會(huì)認(rèn)可.良渚古城遺址是人類早期城市文明的范例,實(shí)證了中華五千年文明史.考古科學(xué)家在測(cè)定遺址年齡的過程中利用了“放射性物質(zhì)因衰變而減少”這一規(guī)律.已知樣本中碳14的質(zhì)量N隨時(shí)間(單位:年)的衰變規(guī)律滿足(表示碳14原有的質(zhì)量),則經(jīng)過5730年后,碳14的質(zhì)量變?yōu)樵瓉淼?/span>______;經(jīng)過測(cè)定,良渚古城遺址文物樣本中碳14的質(zhì)量是原來的,據(jù)此推測(cè)良渚古城存在的時(shí)期距今約在5730年到______年之間.(參考數(shù)據(jù):,,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓,點(diǎn)是它的右端點(diǎn),弦過橢圓的中心,,.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)為圓上不重合的兩點(diǎn),的平分線總是垂直于軸,且存在實(shí)數(shù),使得,求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案