科目: 來源: 題型:
【題目】共享單車的投放,方便了市民短途出行,被譽(yù)為中國“新四大發(fā)明”之一.某市為研究單車用戶與年齡的相關(guān)程度,隨機(jī)調(diào)查了100位成人市民,統(tǒng)計(jì)數(shù)據(jù)如下:
不小于40歲 | 小于40歲 | 合計(jì) | |
單車用戶 | 12 | y | m |
非單車用戶 | x | 32 | 70 |
合計(jì) | n | 50 | 100 |
(1)求出列聯(lián)表中字母x、y、m、n的值;
(2)①從此樣本中,對單車用戶按年齡采取分層抽樣的方法抽出5人進(jìn)行深入調(diào)研,其中不小于40歲的人應(yīng)抽多少人?
②從獨(dú)立性檢驗(yàn)角度分析,能否有以上的把握認(rèn)為該市成人市民是否為單車用戶與年齡是否小于40歲有關(guān).
下面臨界值表供參考:
P( | 0.15 | 0.10 | 0.05 | 0.25 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)是定義在R上的奇函數(shù),當(dāng)
時(shí),
,給出下列命題:
①當(dāng)時(shí),
;
②函數(shù)有2個(gè)零點(diǎn);
③的解集為
;
④,
,都有
.
其中真命題的個(gè)數(shù)為( )
A.4B.3C.2D.1
查看答案和解析>>
科目: 來源: 題型:
【題目】中國古代儒家要求學(xué)生掌握六種基本才藝:禮、樂、射、御、書、數(shù),簡稱“六藝”,某高中學(xué)校為弘揚(yáng)“六藝”的傳統(tǒng)文化,分別進(jìn)行了主題為“禮、樂、射、御、書、數(shù)”六場傳統(tǒng)文化知識競賽,現(xiàn)有甲、乙、丙三位選手進(jìn)入了前三名的最后角逐,規(guī)定:每場知識競賽前三名的得分都分別為且
;選手最后得分為各場得分之和,在六場比賽后,已知甲最后得分為
分,乙和丙最后得分都是
分,且乙在其中一場比賽中獲得第一名,下列說法正確的是( )
A. 乙有四場比賽獲得第三名
B. 每場比賽第一名得分為
C. 甲可能有一場比賽獲得第二名
D. 丙可能有一場比賽獲得第一名
查看答案和解析>>
科目: 來源: 題型:
【題目】某籃球隊(duì)員進(jìn)行定點(diǎn)投籃訓(xùn)練,每次投中的概率是,且每次投籃的結(jié)果互不影響.
(1)假設(shè)這名隊(duì)員投籃5次,求恰有2次投中的概率;
(2)假設(shè)這名隊(duì)員投籃3次,每次投籃,投中得1分,為投中得0分,在3次投籃中,若有2次連續(xù)投中,而另外一次未投中,則額外加1分;若3次全投中,則額外加3分,記為隊(duì)員投籃3次后的總的分?jǐn)?shù),求
的分布列及期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】在《九章算術(shù)》中,將四個(gè)面都為直角三角形的四面體稱之為鱉臑.如圖,在鱉臑中,
平面
,
,且
,過點(diǎn)
分別作
于點(diǎn)
,
于點(diǎn)
,連結(jié)
,當(dāng)
的面積最大時(shí),
__________.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓右焦點(diǎn)
,離心率為
,過
作兩條互相垂直的弦
,設(shè)
中點(diǎn)分別為
.
(1) 求橢圓的標(biāo)準(zhǔn)方程;
(2)求以為頂點(diǎn)的四邊形的面積的取值范圍;
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xy中,曲線C的參數(shù)方程為
為參數(shù)),在以
為極點(diǎn),
軸的非負(fù)半軸為極軸的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
。
(1)求曲線C的極坐標(biāo)方程;
(2)設(shè)直線與曲線C相交于A,B兩點(diǎn),P為曲C上的一動(dòng)點(diǎn),求△PAB面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于兩個(gè)定義域均為D的函數(shù)f(x),g(x),若存在最小正實(shí)數(shù)M,使得對于任意x∈D,都有|f(x)-g(x)|≤M,則稱M為函數(shù)f(x),g(x)的“差距”,并記作||f(x),g(x)||.
(1)求f(x)=sinx(x∈R),g(x)=cosx(x∈R)的差距;
(2)設(shè)f(x)=(x∈[1,
]),g(x)=mlnx (x∈[1,
]).(e≈2.718)
①若m=2,且||f(x),g(x)||=1,求滿足條件的最大正整數(shù)a;
②若a=2,且||f(x),g(x)||=2,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com