科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線ABy=kx﹣1分別交x軸、y軸于點A、B,直線CDy=x+2分別交x軸、y軸于點D、C,且直線AB、CD交于點E,E的橫坐標(biāo)為﹣6.
(1)如圖①,求直線AB的解析式;
(2)如圖②,點P為直線BA第一象限上一點,過P作y軸的平行線交直線CD于G,交x軸于F,在線段PG取點N,在線段AF上取點Q,使GN=QF,在DG上取點M,連接MN、QN,若∠GMN=∠QNF,求的值;
(3)在(2)的條件下,點E關(guān)于x軸對稱點為T,連接MP、TQ,若MP∥TQ,且GN:NP=4:3,求點P的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,△ABC內(nèi)接于圓O,弦CD⊥AB交AB于E,AF⊥BC于點F,AF交CD于點G.
(1)如圖①,求證:DE=EG;
(2)如圖②,連接OG,連接DA并延長至點P,連接CP,點P在CG的垂直平分線上,若AP=2AG,求證:OG∥AB;
(3)如圖③,在(2)的條件下,過點D作DK⊥AF于點K,若∠PAC=∠DAF,KG=,求線段CG的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】兒童節(jié)前,某玩具商店根據(jù)市場調(diào)查,用3000元購進一批兒童玩具,上市后很快脫銷,接著又用5400元購進第二批這種玩具,所購數(shù)量是第一批數(shù)量的1.5倍,但每套進價多了10元.
(1)求第一批玩具每套的進價是多少元?
(2)如果這兩批玩具每套售價相同,且全部售完后總利潤不低于25%,那么每套玩具售價至少是多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)四邊形BEDF是菱形時,求EF的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解某小區(qū)群眾對綠化建設(shè)的滿意程度,對小區(qū)內(nèi)居民進行了隨機調(diào)查,居民在“非常滿意、滿意、一般和不滿意“中必選且只能選一個,并將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息回答下列問題:
(1)本次調(diào)查共抽取了多少名居民?
(2)通過計算補全條形統(tǒng)計圖;
(3)若該小區(qū)一共有1350人,估計該小區(qū)居民對綠化建設(shè)“非常滿意”的有多少人.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長均為1,點A、B、C、D均在小正方形的頂點上,
(1)在圖①中畫出以線段AB為一條邊的菱形ABEF,點E、F在小正方形頂點上,且菱形ABEF的面積為20;
(2)在圖②中畫出以CD為對角線的矩形CGDH,G、H點在小正方形頂點上,點G在CD的下方,且矩形CGDH的面積為10,CG>DG.并直接寫出矩形CGDH的周長.
查看答案和解析>>
科目: 來源: 題型:
【題目】△ABC中,∠C=90°,AC=3,BC=4,將△ABC繞點C順時針旋轉(zhuǎn)a度(0°<a<180°)得到△DCE,點A與點D對應(yīng),點B與點E對應(yīng),當(dāng)點D落在△ABC的邊上時,則BD的長_______
查看答案和解析>>
科目: 來源: 題型:
【題目】已知如圖,直線y=﹣ x+4 與x軸相交于點A,與直線y= x相交于點P.
(1)求點P的坐標(biāo);
(2)動點E從原點O出發(fā),沿著O→P→A的路線向點A勻速運動(E不與點O、A重合),過點E分別作EF⊥x軸于F,EB⊥y軸于B.設(shè)運動t秒時, F的坐標(biāo)為(a,0),矩形EBOF與△OPA重疊部分的面積為S.直接寫出: S與a之間的函數(shù)關(guān)系式
(3)若點M在直線OP上,在平面內(nèi)是否存在一點Q,使以A,P,M,Q為頂點的四邊形為矩形且滿足矩形兩邊AP:PM之比為1: 若存在直接寫出Q點坐標(biāo)。若不存在請說明理由。
查看答案和解析>>
科目: 來源: 題型:
【題目】某汽車制造公司計劃生產(chǎn)A、B兩種新型汽車共40輛投放到市場銷售.已知A型汽車每輛成本34萬元,售價39萬元;B型汽車每輛成本42萬元,售價50萬元.若該公司對此項計劃的投資不低于1536萬元,不高于1552萬元.請解答下列問題:
(1)該公司有哪幾種生產(chǎn)方案?
(2)該公司按照哪種方案生產(chǎn)汽車,才能在這批汽車全部售出后,所獲利潤最大,最大利潤是多少?
(3)在(2)的情況下,公司決定拿出利潤的2.5%全部用于生產(chǎn)甲乙兩種鋼板(兩種都生產(chǎn)),甲鋼板每噸5000元,乙鋼板每噸6000元,共有多少種生產(chǎn)方案?(直接寫出答案)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知如圖①Rt△ABC和Rt△EDC中,∠ACB=∠ECD=90°,A,C,D在同一條直線上,點M,N,F分別為AB,ED,AD的中點,∠B=∠EDC=45°,
(1)求證MF=NF
(2)當(dāng)∠B=∠EDC=30°,A,C,D在同一條直線上或不在同一條直線上,如圖②,圖③這兩種情況時,請猜想線段MF,NF之間的數(shù)量關(guān)系。(不必證明)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com