相關(guān)習(xí)題
0 133662 133670 133676 133680 133686 133688 133692 133698 133700 133706 133712 133716 133718 133722 133728 133730 133736 133740 133742 133746 133748 133752 133754 133756 133757 133758 133760 133761 133762 133764 133766 133770 133772 133776 133778 133782 133788 133790 133796 133800 133802 133806 133812 133818 133820 133826 133830 133832 133838 133842 133848 133856 366461
科目:
來源:2011-2012學(xué)年江蘇省蘇州市常熟一中九年級(上)階段性檢測數(shù)學(xué)試卷(解析版)
題型:填空題
如圖所示,在矩形ABCD的頂點A處拴了一只小羊,在B、C、D處各有一筐青草,要使小羊至少能吃到一筐子里的草,且至少有一個筐子里的草吃不到.如果AB=5,BC=12,則拴羊繩的長l的取值范圍是
.
查看答案和解析>>
科目:
來源:2011-2012學(xué)年江蘇省蘇州市常熟一中九年級(上)階段性檢測數(shù)學(xué)試卷(解析版)
題型:填空題
如圖,AB為⊙O的弦,⊙O的半徑為5,OC⊥AB于點D,交⊙O于點C,且CD=1,則弦AB的長是
.
查看答案和解析>>
科目:
來源:2011-2012學(xué)年江蘇省蘇州市常熟一中九年級(上)階段性檢測數(shù)學(xué)試卷(解析版)
題型:解答題
用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋ńM):
(1)(x-5)
2-9=0;
(2)3x
2-1=6x
(3)x
2+2x-63=0
(4)
(5)
(6)
.
查看答案和解析>>
科目:
來源:2011-2012學(xué)年江蘇省蘇州市常熟一中九年級(上)階段性檢測數(shù)學(xué)試卷(解析版)
題型:解答題
已知關(guān)于x的二次方程(m+1)x2+3x+m2-3m-4=0的一個根為0,求m的值.
查看答案和解析>>
科目:
來源:2011-2012學(xué)年江蘇省蘇州市常熟一中九年級(上)階段性檢測數(shù)學(xué)試卷(解析版)
題型:解答題
如圖,已知以點O為兩個同心圓的公共圓心,大圓的弦AB交小圓于C、D兩點.
(1)求證:AC=BD;
(2)若AB=8,CD=4,求圓環(huán)的面積.
查看答案和解析>>
科目:
來源:2011-2012學(xué)年江蘇省蘇州市常熟一中九年級(上)階段性檢測數(shù)學(xué)試卷(解析版)
題型:解答題
已知⊙O的半徑為12cm,弦AB=16cm.
(1)求圓心O到弦AB的距離;
(2)如果弦AB的長度保持不變,兩個端點在圓周上滑動,那么弦AB的中點形成什么樣的圖形?
查看答案和解析>>
科目:
來源:2011-2012學(xué)年江蘇省蘇州市常熟一中九年級(上)階段性檢測數(shù)學(xué)試卷(解析版)
題型:解答題
如圖,八一廣場要設(shè)計一個矩形花壇,花壇的長、寬分別為200m、120m,花壇中有一橫兩縱的通道,橫、縱通道的寬度分別為3xm、2xm.
(1)用代數(shù)式表示三條通道的總面積S;當(dāng)通道總面積為花壇總面積的
時,求橫、縱通道的寬分別是多少?
(2)如果花壇綠化造價為每平方米3元,通道總造價為3168x元,那么橫、縱通道的寬分別為多少米時,花壇總造價最低?并求出最低造價.
(以下數(shù)據(jù)可供參考:85
2=7225,86
2=7396,87
2=7569)
查看答案和解析>>
科目:
來源:2011-2012學(xué)年江蘇省蘇州市常熟一中九年級(上)階段性檢測數(shù)學(xué)試卷(解析版)
題型:解答題
某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下圖是水平放置的破裂管道有水部分的截面.
(1)請你補全這個輸水管道的圓形截面;
(2)若這個輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,求這個圓形截面的半徑.
查看答案和解析>>
科目:
來源:2011-2012學(xué)年江蘇省蘇州市常熟一中九年級(上)階段性檢測數(shù)學(xué)試卷(解析版)
題型:解答題
閱讀下列例題:
解方程x2-|x|-2=0
解:(1)當(dāng)x≥0時,原方程化為x2-x-2=0,解得x1=2,x2=-1(舍去).
當(dāng)x<0時,原方程化為x2+x-2=0,解得x1=1(舍去),x2=-2.
∴x1=2,x2=-2是原方程的根.
請參照例題解方程:x2-|x-1|-1=0.
查看答案和解析>>
科目:
來源:2011-2012學(xué)年江蘇省蘇州市常熟一中九年級(上)階段性檢測數(shù)學(xué)試卷(解析版)
題型:解答題
已知關(guān)于x的一元二次方程ax2+x-a=0(a≠0).
(1)求證:對于任意非零實數(shù)a,該方程恒有兩個異號的實數(shù)根;
(2)設(shè)x1、x2是該方程的兩個根,若|x1|+|x2|=4,求a的值.
查看答案和解析>>