【題目】如圖,點為等邊三角形內(nèi)一點,連接,,以為一邊作,且,連接、.

(1)判斷的大小關系并證明;

(2)若,,,判斷的形狀并證明.

【答案】1AO=CM,見解析;(2)△OMC是直角三角形,見解析.

【解析】

1)可證出△OBM是等邊三角形,得出OM=OB=BM,由∠ABC=OBM得出∠ABO=CBM,根據(jù)SAS證明AOB≌△CMB,即可得出結論;
2)由勾股定理的逆定理即可得出結論.

解:(1AO=CM;理由如下:
∵∠OBM=60°,OB=BM,
∴ △OBM是等邊三角形
∴ OM=OB=BM,
∠ABC=∠OBM=60°
∴∠ABO=∠CBM,
△AOB△CMB中, ,
∴△AOB≌△CMBSAS),
∴ AO=CM;
2△OMC是直角三角形;理由如下:
△OMC中,OM2=100,OC2+CM2=62+82=100
∴OM2=OC2+CM2,
∴△OMC是直角三角形.

故答案為:(1AO=CM,見解析;(2OMC是直角三角形,見解析.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形ABCD中,對角線AC、BD相交于點OAOD的周長比AOB的周長小3 cm.若AD5 cm,則平行四邊形ABCD的周長為______cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題中:①有限小數(shù)是有理數(shù);②無限小數(shù)都是無理數(shù);③任意兩個無理數(shù)的和還是無理數(shù);④開方開不盡的數(shù)是無理數(shù);⑤一個數(shù)的算術平方根一定是正數(shù);⑥一個數(shù)的立方根一定比這個數(shù);⑦任意兩個有理數(shù)之間都有有理數(shù),任意兩個無理數(shù)之間都有無理數(shù).⑧有理數(shù)和數(shù)軸上的點一一對應;⑨不帶根號的數(shù)一定是有理數(shù);⑩負數(shù)沒有立方根.其中正確的有( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=9,AC=12.分別以點A和點B為圓心、大于AB一半的長為半徑作圓弧,兩弧相交于點E和點F,作直線EF交AB于點D,連結CD.則CD的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算

1

2)如圖,將矩形ABCD沿GH折疊,點C落在點Q處,點D落在AB邊上的點E處,若∠AGE=32°,求∠GHC度數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩條長度均為2的線段和線段互相重合,將沿直線向左平移個單位長度,將沿直線向右也平移個單位長度,當、是線段的三等分點時,則的值為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:中,,平分,連接,延長于點,.

1)如圖1,求證:

2)如圖2,若,在不添加任何輔助線的情況下,請直接寫出圖中所有底角為的等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,的平分線相交于點O,過O點作AB于點E,交AC于點F,過點OD,下列四個結論.

O各邊的距離相等,,則,正確的結論有  個.

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個口袋中有4個完全相同的小球,把它們分別標號為1,2,3,4,隨機地摸出一個小球不放回,再隨機地摸出一個小球,則兩次摸出的小球的標號的和為奇數(shù)的概率是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案