【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=9,AC=12.分別以點A和點B為圓心、大于AB一半的長為半徑作圓弧,兩弧相交于點E和點F,作直線EF交AB于點D,連結(jié)CD.則CD的長為

【答案】
【解析】解:由作圖可知,EF垂直平分AB,即DC是直角三角形ABC斜邊上的中線,

故DC= AB= = ×15=

所以答案是:

【考點精析】本題主要考查了線段垂直平分線的性質(zhì)和直角三角形斜邊上的中線的相關(guān)知識點,需要掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等;直角三角形斜邊上的中線等于斜邊的一半才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,反比例函數(shù)y=x0)的圖象經(jīng)過矩形OABC的對角線AC的中點M,分別與AB,BC交于點DE,若BD=3,OA=4,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,對角線AC、BD相交于點O,AB=5,AC=6,過點D作AC的平行線交BC的延長線于點E,則△BDE的面積為( )

A.22
B.24
C.48
D.44

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三角形ABC, B=60°, C=,點DAB上一點,EAC上一點, ADE=60°, F為線段BC上一點,連接EF,過DDG//ACEF于點G,

(1)=40°,求∠EDG的度數(shù);

(2)若∠FEC=2DEF,∠DGF=BFG,求.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小強家有一塊三角形菜地,量得兩邊長分別為,,第三邊上的高為.請你幫小強計算這塊菜地的面積.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC在直角坐標(biāo)系中。

(1)請寫出ABC各點的坐標(biāo);

(2)求出ABC的面積SABC;

(3)若把ABC向上平移2個單位,再向右平移2個單位得A1B1C1,在圖中畫出A1B1C1,并寫出A1B1C1的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點為等邊三角形內(nèi)一點,連接,,以為一邊作,且,連接.

(1)判斷的大小關(guān)系并證明;

(2)若,,,判斷的形狀并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:在三角形中,把一邊的中點到這條邊的高線的距離叫做這條邊的中垂距.
例:如圖①,在△ABC中,D為邊BC的中點,AE⊥BC于E,則線段DE的長叫做邊BC的中垂距.

(1)設(shè)三角形一邊的中垂距為d(d≥0).若d=0,則這樣的三角形一定是 , 推斷的數(shù)學(xué)依據(jù)是
(2)如圖②,在△ABC中,∠B=45°,AB= ,BC=8,AD為邊BC的中線,求邊BC的中垂距.

(3)如圖③,在矩形ABCD中,AB=6,AD=4.點E為邊CD的中點,連結(jié)AE并延長交BC的延長線于點F,連結(jié)AC.求△ACF中邊AF的中垂距.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A,B的坐標(biāo)分別為(2,0),(6,0),現(xiàn)同時將點A,B分別向上平移4個單位,再向右平移2個單位,分別得到點AB的對應(yīng)點C、D,連接AC、BD

(1)求點C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABDC

(2)y軸上是否存在一點P,連接PA、PB,使SPAB=S四邊形ABDC,若存在這樣一點,求出點P的坐標(biāo),若不存在,試說明理由.

(3)P是線段BD上的一個動點,連接PC,PO,當(dāng)點PBD上移動時(不與B,D重合)給出下列結(jié)論:①的值不變;的值不變,其中有且只有一個是正確的,請你找出這個結(jié)論并求其值.

查看答案和解析>>

同步練習(xí)冊答案