一元二次方程專題復(fù)習(xí)(二)
根與系數(shù)的關(guān)系及其應(yīng)用
如果一元二次方程ax2+bx+c=0(a≠0)的兩根為x1,x2,那么
反過(guò)來(lái),如果x1,x2滿足x1+x2=p,x1x2=q,則x1,x2是一元二次方程x2-px+q=0的兩個(gè)根.一元二次方程的韋達(dá)定理,揭示了根與系數(shù)的一種必然聯(lián)系.利用這個(gè)關(guān)系,我們可以解決諸如已知一根求另一根、求根的代數(shù)式的值、構(gòu)造方程、證明等式和不等式等問(wèn)題,它是中學(xué)數(shù)學(xué)中的一個(gè)有用的工具.
【典型例題】
應(yīng)用一:已知一個(gè)根,求另一個(gè)根;
例1 : 方程(1998x)2-1997?1999x-1=0的大根為a,方程x2+1998x-1999=0的小根為b,求a-b的值.
解 : 先求出a,b.
由觀察知,1是方程(1998x)2-1997?1999x-1=0的根,于是由韋達(dá)定理知,另一根為,于是可得a=1.又從觀察知,1也是方程x2+1998x-1999=0的根,此方程的另一根為-1999,從而b=-1999.
所以a-b=1-(-1999)=2000.
應(yīng)用二:求根的代數(shù)式的值
不解方程,利用一元二次方程根與系數(shù)的關(guān)系求兩個(gè)代數(shù)式的值關(guān)鍵是把所給的代數(shù)式經(jīng)過(guò)恒等變形,化為含,的形式,然后把,的值代入,即可求出所求代數(shù)式的值.常見(jiàn)的代數(shù)式變形有:
① ②
③ ④
⑤
例2: 已知二次方程x2-3x+1=0的兩根為α,β,求:
(1) (2) (3)α3+β3
解: 由韋達(dá)定理知 : α+β=3, α?β=1.
(1) (2)
(3)α3+β3=(α+β)(α2-αβ+β2)=(α+β)[(α+β)2-3αβ]=3(9-3)=18;
例3: 設(shè)方程4x2-2x-3=0的兩個(gè)根是α和β,求4α2+2β的值.
解: 因?yàn)棣潦欠匠?x2-2x-3=0的根,所以
4α2-2α-3=0,
即 4α2=2α+3.由韋達(dá)定理可知,.所以
4α2+2β=2α+3+2β=2(α+β)+3=4.
例4: 已知α,β分別是方程x2+x-1=0的兩個(gè)根,求2α5+5β3的值.
解: 由于α,β分別是方程x2+x-1=0的根,所以
α2+α-1=0,β2+β-1=0,
即 α2=1-α,β2=1-β.
α5=(α2)2?α=(1-α)2α=(α2-2α+1)α=(1-α-2α+1)α= -3α2+2α
= -3(1-α)+2α=5α-3,
β3=β2?β=(1-β)β=β-β2=β-(1-β)=2β-1.所以
2α5+5β3=2(5α-3)+5(2β-1)=10(α+β)-11=-21.
說(shuō)明: 此解法的關(guān)鍵在于利用α,β是方程的根,從而可以把它們的冪指數(shù)降次,最后都降到一次,這種方法很重要.
應(yīng)用三:與兩根之比有關(guān)的問(wèn)題;
例5: 已知x1,x2是一元二次方程 4x2-(
解: 首先,△=(
從上面兩式中消去k,便得
即 m2
所以 m1=1,m2=5.
應(yīng)用四:求作新的二次方程
例6: 求一個(gè)一元二次方程,使它的兩根分別是。
解:
例7: 已知方程的兩根為,求一個(gè)一元二次方程,使它兩根為和。
分析:所求方程,只要求出的值即可。
解:設(shè)所求一元二次方程為
為方程的兩根
∴由韋達(dá)定理
又
∴所求一元二次方程為
即:
點(diǎn)撥:應(yīng)用根系關(guān)系構(gòu)造方程,如果方程有兩實(shí)根,那么方程為,當(dāng)為分?jǐn)?shù)時(shí),往往化成整系數(shù)方程。
應(yīng)用五:求方程中某些待定字母系數(shù)的值
例8: 已知是關(guān)于x的一元二次方程的兩個(gè)實(shí)數(shù)根。
(1)用含m的代數(shù)式表示;
(2)當(dāng)時(shí),求m的值。
解:(1)由題意:
(2)由(1)得:
解得:
檢驗(yàn):當(dāng)時(shí),原方程無(wú)實(shí)根。
∴舍去
當(dāng)時(shí),原方程有實(shí)根。
∴
點(diǎn)撥:易忽略檢驗(yàn),要學(xué)會(huì)靈活應(yīng)用一元二次方程有關(guān)概念,及判別式,根系關(guān)系。
應(yīng)用六:判斷一元二次方程根的符號(hào)
例9: 已知方程.m為何值時(shí),方程有兩個(gè)正根.
解:.
,
∴m為任何實(shí)數(shù)時(shí),方程都有兩個(gè)不相等的實(shí)數(shù)根.
當(dāng)方程的兩個(gè)根都為正數(shù)時(shí),有,且.解不等式組
,解得 m>7. ∴ m>7時(shí),方程有兩個(gè)正實(shí)數(shù)根
【模擬試題】
一. 選擇題。
1. 已知是關(guān)于x的一元二次方程的一個(gè)根,則k與另一根分別為( )
A. 2,-1 B. -1,2 C. -2,1 D. 1,-2
2. 已知方程的兩根互為相反數(shù),則m的值是( )
A. 4 B. -4 C. 1 D. -1
3. 若方程有兩負(fù)根,則k的取值范圍是( )
A. B. C. D.
4. 若方程的兩根中,只有一個(gè)是0,那么( )
A. B.
C. D. 不能確定
5. 方程的大根與小根之差等于( )
A. B. C. 1 D.
6. 以為根的,且二次項(xiàng)系數(shù)為1的一元二次方程是( )
A. B.
C. D.
7. 若方程組有兩組相同的實(shí)根,則m=_______________。
A. 1 B. 2 C. 3 D. 4
二. 填空題。
7. 關(guān)于x的一元二次方程的兩根互為倒數(shù),則m=________。
8. 已知一元二次方程兩根比2:3,則a,b,c之間的關(guān)系是______。
9. 已知方程的兩根,且,則________。
10. 已知是方程的兩根,不解方程可得:________,________。
11. 已知,則以為根的一元二次方程是______________________________。
12.如果一個(gè)矩形的長(zhǎng)和寬是一元二次方程的兩個(gè)根,那么這個(gè)矩形的周長(zhǎng)是_________
三. 解答題。
13. 已知方程的兩個(gè)實(shí)根中,其中一個(gè)是另一個(gè)的2倍,求m的值。
14. 已知方程的兩根不解方程,求的值。
15. 已知方程的兩根,求作以為兩根的方程。
16. 設(shè)是方程的兩個(gè)實(shí)根,且兩實(shí)根的倒數(shù)和等于3,試求m的值。
17.已知關(guān)于x的方程
(1)當(dāng)方程有兩個(gè)相等的實(shí)數(shù)根,求m的取值,并求出此時(shí)方程的根。
(2)是否存在正數(shù)m,使方程的兩個(gè)實(shí)數(shù)根的平方和等于136?若存在,請(qǐng)求出m的值,不存在,說(shuō)明理由。
2007-2008年北京中考數(shù)學(xué)一元二次方程試題匯編
1.已知關(guān)于x的一元二次方程的兩個(gè)不相等的實(shí)根中,有一個(gè)根是0,則m的值為_(kāi)________________________.
2.已知:關(guān)于x的二次方程的一個(gè)根為x=1,且有,則的值為_(kāi)____________________.
3.甲、乙、丙三家超市為了促銷(xiāo)一種定價(jià)均為m元的商品,甲超市連續(xù)兩次降價(jià)20%,乙超市一次性降價(jià)40%,丙超市第一次降價(jià)30%,第二次降價(jià)10%,此時(shí)顧客要購(gòu)買(mǎi)這種商品最劃算應(yīng)到的超市是 ( 。
A.甲 B.乙 C.丙 D. 乙或丙
4.“5?
A. B.
C. D.
6.已知:關(guān)于的一元二次方程.
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)方程的兩個(gè)實(shí)數(shù)根分別為,(其中).若是關(guān)于的函數(shù),且,求這個(gè)函數(shù)的解析式;
(3)在(2)的條件下,結(jié)合函數(shù)的圖象回答:當(dāng)自變量的取值范圍滿足什么條件時(shí),.
(1)證明:
(2)解:
(3)解:
7.已知:關(guān)于x的兩個(gè)方程 ① 與 ②
方程①有兩個(gè)不相等的負(fù)實(shí)數(shù)根,方程②有兩個(gè)實(shí)數(shù)根
⑴求證方程②的有兩根符號(hào)相同;
⑵設(shè)方程②的兩根分別為,若:=1:3,且n為整數(shù),求m的最小整數(shù)值.
8.已知關(guān)于x的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根.
⑴ 求k的取值范圍;
⑵ 如果k是符合條件的最大整數(shù),且一元二次方程與有一個(gè)相同的根,求此時(shí)m的值.
9.北京申奧成功,促進(jìn)了一批產(chǎn)業(yè)的迅速發(fā)展,某通信公司開(kāi)發(fā)了一種新型通信產(chǎn)品投放市場(chǎng),根據(jù)計(jì)劃,第一年投入資金600萬(wàn)元,第二年比第一年減少,第三年比第二年減少,該產(chǎn)品第一年收入資金約為400萬(wàn)元,公司計(jì)劃三年內(nèi)不僅要將投入的總資金全部收回,還要贏利,要實(shí)現(xiàn)這一目標(biāo),該產(chǎn)品收入的年平均增長(zhǎng)率約是多少?(百分號(hào)前保留整數(shù),參考數(shù)據(jù):)
10.某商店經(jīng)銷(xiāo)一種銷(xiāo)售成本為每千克40元的水產(chǎn)品,根據(jù)市場(chǎng)分析,若按每千克50元銷(xiāo)售,一個(gè)月能售出500千克,銷(xiāo)售單價(jià)每漲1元,月銷(xiāo)售量就減少10千克,針對(duì)這種水產(chǎn)品的銷(xiāo)售情況請(qǐng)解答以下問(wèn)題:
⑴ 當(dāng)銷(xiāo)售單價(jià)為每千克55元時(shí),計(jì)算月銷(xiāo)售量和月銷(xiāo)售利潤(rùn);
⑵ 商店想在月銷(xiāo)售成本不超過(guò)10000元的情況下,使得月銷(xiāo)售利潤(rùn)達(dá)到8000元,銷(xiāo)售單價(jià)應(yīng)定為多少?
11. 某商店有一批襯衫將出售,如果每件盈利40元,每天可售出20件,為了盡快減少庫(kù)存,增加盈利,商場(chǎng)決定降價(jià)出售,經(jīng)過(guò)調(diào)查得知,若每件襯衫降價(jià)1元,則平均每天多售出2件,問(wèn):
(1)每件襯衫應(yīng)降價(jià)多少元時(shí),平均每天可盈利1200元;
(2)商場(chǎng)每天盈利能不能達(dá)到1250元,若能達(dá)到,每件襯衫應(yīng)降價(jià)多少元?若不能達(dá)到,請(qǐng)說(shuō)明理由。
12. 一塊矩形耕地大小尺寸如圖1,如果修筑同樣寬的兩條“之”字形的道路,如圖1所示,余下的部分作為耕地.要使耕地的面積為
13. 某村計(jì)劃建造如圖所示的矩形蔬菜溫室,要求長(zhǎng)與寬的比為.在溫室內(nèi),沿前側(cè)內(nèi)墻保留
14. 在一幅長(zhǎng)
15.在長(zhǎng)為
16.如圖,有一長(zhǎng)方形的地區(qū),長(zhǎng)為x千米,寬為
16.一塊矩形耕地大小尺寸(如圖1所示)要在這塊土地上沿東西和南北方向分別挖2條和4條水渠,如果水渠的寬相等,而且要保證余下的可耕地面積為
一元二次方程專題復(fù)習(xí)(一)
【課標(biāo)要求】
1. 了解一元二次方程的定義及一元二次方程的一般形式:ax2+bx+c=0(a≠0).
2. 掌握一元二次方程的四種解法,并能靈活運(yùn)用.
3. 掌握一元二次方程根的判別式,并能運(yùn)用它解相應(yīng)問(wèn)題.
4. 掌握一元二次方程根與系數(shù)的關(guān)系,會(huì)用它們解決有關(guān)問(wèn)題.
5. 會(huì)解一元二次方程應(yīng)用題.
【知識(shí)梳理】
1.靈活運(yùn)用四種解法解一元二次方程:一元二次方程的一般形式:a2x+bx+c=0(a≠0)
四種解法:直接開(kāi)平方法,配方法,公式法, 因式分解法,公式法:
注意:掌握一元二次方程求根公式的推導(dǎo);主要數(shù)學(xué)方法有:配方法,換元法,“消元”與“降次”。
2.根的判別式及應(yīng)用(△=b2
(1)判定一元二次方程根的情況。
(2)確定字母的值或取值范圍。
3.根與系數(shù)的關(guān)系(韋達(dá)定理)的應(yīng)用:韋達(dá)定理:如果一元二次方程ax2+bx+c=0(a≠0)的兩根為x1、x2,則x1+x2=―,x1?x2=。
(1)已知一根求另一根及未知系數(shù);
(2)求與方程的根有關(guān)的代數(shù)式的值;
(3)已知兩根求作方程;
(4)已知兩數(shù)的和與積,求這兩個(gè)數(shù);
(5)確定根的符號(hào):(x1,x2是方程兩根)。
應(yīng)用韋達(dá)定理時(shí),要確保一元二次方程有根,即一定要判斷根的判別式是否非負(fù);求作一元二次方程時(shí),一般把求作方程的二次項(xiàng)系數(shù)設(shè)為1,即以x1、x2為根的一元二次方程為x2-(x1+x2)x+x1x2=0;求字母系數(shù)的值時(shí),需使二次項(xiàng)系數(shù)a≠0,同時(shí)滿足△≥0;求代數(shù)式的值,常用整體思想,把所求代數(shù)式變形成為含有兩根之和x1+x2,兩根之積x1x2的代數(shù)式的形式,整體代入。
4.一元二次方程的應(yīng)用:解應(yīng)用題的關(guān)鍵是把握題意,找準(zhǔn)等量關(guān)系,列出方程。最后還要注意求出的未知數(shù)的值,是否符合實(shí)際意義。
【中考主要考點(diǎn)】
①利用一元二次方程的意義解決問(wèn)題
②用整體思想對(duì)復(fù)雜的高次方程或分式方程進(jìn)行變形(換元法)
③考查配方法(主要結(jié)合函數(shù)的頂點(diǎn)式來(lái)研究)
④一元二次方程的解法
⑤一元二次方程根的近似值
⑥建立一元二次方程模型解決問(wèn)題
⑦利用根的判別式求方程中的字母系數(shù)的值和利用根與系數(shù)關(guān)系求代數(shù)式的值
⑧與一元二次方程相關(guān)的探索或說(shuō)理題
⑨與其他知識(shí)結(jié)合,綜合解決問(wèn)題
一元二次方程的定義、解法
Ø 要點(diǎn)、考點(diǎn)聚焦
1. 加深理解一元二次方程的有關(guān)概念及一元二次方程的一般形式ax2+bx+c=0 (a≠0)
2.熟練地應(yīng)用不同的方法解方程;直接開(kāi)平方法、配方法、公式法、因式分解法;并體會(huì)“降冪法”在解方程中的含義.(其中配方法很重要)
Ø 課前熱身
1. 當(dāng)a__________時(shí),方程ax2+3x+1=0是一元二次方程.
2. 已知x=1是方程x2+ax+2=0的一個(gè)根,則方程的另一根為__________.
3.一元二次方程x(x-1)=x的解是_____________.
4. 若關(guān)于x的一元二次方程ax2+bx+c=0 (a≠0),且a+b+c=0,則方程必有一根為_______.
5. 用配方法解方程x2-4x+2=0,則下列配方正確的是( )
A (x-2)2=2 B (x+2)2=
Ø 典型例題解析
1、關(guān)于x的一元二次方程(ax-1)(ax-2) =x2-2x+6中,求a的取值范圍___________.
2、已知:關(guān)于x的方程x2-6x+m2-
3、用配方法解方程2x2-x-1=0
【課時(shí)訓(xùn)練】
1、關(guān)于的一元二次方程的一個(gè)根是0,則的值為( )
A、 B、 C、或 D、
2、解方程的最適當(dāng)?shù)姆椒ǎ?nbsp; )
A. 直接開(kāi)平方法 B. 配方法 C. 因式分解法 D. 公式法
3、若a-b+c=0,則一元二次方程ax2+bx+c=0有一根是( )
A. 2 B. 1 C. 0 D. -1
4、k____________時(shí),(k2-9)x2+(k-5)x-3=0不是關(guān)于x的一元二次方程.
5、已知方程,則代數(shù)式_________.
6、解下列方程:
(1)(x-1)2=4 (2)x2-2x-3=0 (3)2t2-7t-4=0(用配方法)
一元二次方程根的判別式
Ø 要點(diǎn)、考點(diǎn)聚焦
1.一元二次方程ax2+bx+c=0(a≠0)根的情況:
(1)當(dāng)Δ>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;(2)當(dāng)Δ=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;
(3)當(dāng)Δ<0時(shí),方程無(wú)實(shí)數(shù)根.
2.一元二次方程根的判別式的性質(zhì)反用也成立,即已知根的情況,可以得到一個(gè)等式或不等式,從而確定系數(shù)的值或取值范圍.
Ø 課前熱身
1.(2008年?西寧市)若關(guān)于x的一元二次方程mx2-2x+1=0有實(shí)數(shù)根,則m的取值范圍是 ( )
A.m<1 B. m<1且m≠0
C.m≤1 D. m≤1且m≠0
2. (2008年?南通市)若關(guān)于x的方程x2+(2k-1)x+k2-=0有兩個(gè)相等的實(shí)數(shù)根,則k= .
3.( 2007巴中市)一元二次方程的根的情況為( 。
A. 有兩個(gè)相等的實(shí)數(shù)根 B. 有兩個(gè)不相等的實(shí)數(shù)根C. 只有一個(gè)實(shí)數(shù)根 D. 沒(méi)有實(shí)數(shù)根
4、(2007湖北天門(mén))已知關(guān)于x的一元二次方程x2+4x+m-1=0。請(qǐng)你為m選取一個(gè)合適的整數(shù),當(dāng)m=________時(shí),使得到的方程有兩個(gè)不相等的實(shí)數(shù)根;
Ø 典型例題解析
【例1】 已知關(guān)于x的方程(m-2)x2-2(m-1)x+m+1=0,當(dāng)m為何非負(fù)整數(shù)時(shí):
(1)方程只有一個(gè)實(shí)數(shù)根;(2)方程有兩個(gè)相等的實(shí)數(shù)根;(3)方程有兩個(gè)不等的實(shí)數(shù)根.
【例2】 已知a,b,c是三角形的三條邊,
求證:關(guān)于x的方程b2x2+(b2+c2-a2)x+c2=0沒(méi)有實(shí)數(shù)根
【課時(shí)訓(xùn)練】
1、(2007巴中市)一元二次方程的根的情況為( )
A. 有兩個(gè)相等的實(shí)數(shù)根 B. 有兩個(gè)不相等的實(shí)數(shù)根
C. 只有一個(gè)實(shí)數(shù)根 D. 沒(méi)有實(shí)數(shù)根
2、(2007安徽蕪湖)已知關(guān)于x 的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,則m的取值范圍是( )
A. m>-1 B. m<-2 C. m ≥0 D. m<0
3、一元二次方程(1-k)x2-2x-1=0有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是________.
4、求證:關(guān)于x的方程x2+(2k+1)x+k-1=0有兩個(gè)不相等的實(shí)數(shù)根。
中考試題來(lái)做
09年北京中考數(shù)學(xué)一模壓軸題精選
【海淀一!1、我們給出如下定義:如果四邊形中一對(duì)頂點(diǎn)到另一對(duì)
頂點(diǎn)所連對(duì)角線的距離相等,則把這對(duì)頂點(diǎn)叫做這個(gè)
四邊形的一對(duì)等高點(diǎn).例如:如圖1,平行四邊形ABCD
中,可證點(diǎn)A、C到BD的距離相等,所以點(diǎn)A、C是
平行四邊形ABCD的一對(duì)等高點(diǎn),同理可知點(diǎn)B、D
也是平行四邊形ABCD的一對(duì)等高點(diǎn). 圖1
(1)如圖2,已知平行四邊形ABCD, 請(qǐng)你在圖2中畫(huà)出一個(gè)只有一對(duì)等高點(diǎn)的四
邊形ABCE(要求:畫(huà)出必要的輔助線);
(2)已知P是四邊形ABCD對(duì)角線BD上任意一點(diǎn)(不與B、D點(diǎn)重合),請(qǐng)分別
探究圖3、圖4中S1, S2, S3, S4四者之間的等量關(guān)系(S1, S2, S3, S4分別表示△ABP,
△CBP, △CDP, △ADP的面積):
① 如圖3,當(dāng)四邊形ABCD只有一對(duì)等高點(diǎn)A、C時(shí),你得到的一個(gè)結(jié)論是 ________;
② 如圖4,當(dāng)四邊形ABCD沒(méi)有等高點(diǎn)時(shí),你得到的一個(gè)結(jié)論是 ____________.
圖2 圖3 圖4
【海淀一模】2、已知: 關(guān)于x的一元一次方程kx=x+2 ①的根為正實(shí)數(shù),二次函數(shù)y=ax2-bx+kc
(c≠0)的圖象與x軸一個(gè)交點(diǎn)的橫坐標(biāo)為1.
(1)若方程①的根為正整數(shù),求整數(shù)k的值;
(2)求代數(shù)式的值;
(3)求證: 關(guān)于x的一元二次方程ax2-bx+c=0 ②必有兩個(gè)不相等的實(shí)數(shù)根.
【海淀一!3、在課外小組活動(dòng)時(shí),小慧拿來(lái)一道題(原問(wèn)題)和小東、小明交流.
原問(wèn)題:如圖1,已知△ABC, ∠ACB=90° , ∠ABC=45°,分別以AB、BC為邊向外作△ABD與△BCE, 且DA=DB, EB=EC,∠ADB=∠BEC=90°,連接DE交AB于點(diǎn)F. 探究線段DF與EF的數(shù)量關(guān)系.
小慧同學(xué)的思路是:過(guò)點(diǎn)D作DG⊥AB于G,構(gòu)造全等三角形,通過(guò)推理使問(wèn)
題得解.
小東同學(xué)說(shuō):我做過(guò)一道類(lèi)似的題目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.
小明同學(xué)經(jīng)過(guò)合情推理,提出一個(gè)猜想,我們可以把問(wèn)題推廣到一般情況.
請(qǐng)你參考小慧同學(xué)的思路,探究并解決這三位同學(xué)提出的問(wèn)題:
(1)寫(xiě)出原問(wèn)題中DF與EF的數(shù)量關(guān)系;
(2)如圖2,若∠ABC=30°,∠ADB=∠BEC=60°,原問(wèn)題中的其他條件不變,你在
(1)中得到的結(jié)論是否發(fā)生變化?請(qǐng)寫(xiě)出你的猜想并加以證明;
(3)如圖3,若∠ADB=∠BEC=2∠ABC, 原問(wèn)題中的其他條件不變,你在(1)中
得到的結(jié)論是否發(fā)生變化?請(qǐng)寫(xiě)出你的猜想并加以證明.
【海淀一!4、已知拋物線經(jīng)過(guò)點(diǎn) A (0, 4)、B(1, 4)、C (3, 2),與x軸正半軸交于點(diǎn)D.
(1)求此拋物線的解析式及點(diǎn)D的坐標(biāo);
(2)在x軸上求一點(diǎn)E, 使得△BCE是以BC為底邊的等腰三角形;
(3)在(2)的條件下,過(guò)線段ED上動(dòng)點(diǎn)P作直線PF//BC, 與BE、CE分別交于
點(diǎn)F、G,將△EFG沿FG翻折得到△E¢FG. 設(shè)P(x, 0), △E¢FG與四邊形FGCB
重疊部分的面積為S,求S與x的函數(shù)關(guān)系式及自變量x的取值范圍.
【東城一模】5、已知:關(guān)于的一元二次方程
(1)若求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)若12<m<40的整數(shù),且方程有兩個(gè)整數(shù)根,求的值.
(東城)24. (本題滿分7分)在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,且點(diǎn)A(0,2),點(diǎn)C(-1,0),如圖所示,拋物線經(jīng)過(guò)點(diǎn)B.
(1)求點(diǎn)B的坐標(biāo);
(2)求拋物線的解析式;
(3)在拋物線上是否還存在點(diǎn)P(點(diǎn)B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【東城一!6、請(qǐng)閱讀下列材料:
圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等.即如右圖1,若弦AB、CD交于點(diǎn)P則PA?PB=PC?PD.請(qǐng)你根據(jù)以上材料,解決下列問(wèn)題.
已知⊙O的半徑為2,P是⊙O內(nèi)一點(diǎn),且OP=1,過(guò)點(diǎn)P任作一弦AC,過(guò)A、C兩點(diǎn)分別作⊙O的切線m和n,作PQ⊥m于點(diǎn)Q,PR⊥n于點(diǎn)R.(如圖2)
(1)若AC恰經(jīng)過(guò)圓心O,請(qǐng)你在圖3中畫(huà)出符合題意的圖形,并計(jì)算:的值;
(2)若OP⊥AC, 請(qǐng)你在圖4中畫(huà)出符合題意的圖形,并計(jì)算:的值;
(3)若AC是過(guò)點(diǎn)P的任一弦(圖2), 請(qǐng)你結(jié)合(1)(2)的結(jié)論, 猜想:的值,并給出證明.
【房山一!7、已知關(guān)于x的一元二次方程kx2+(3k+1)x+2k+1=0.
(1)求證:該方程必有兩個(gè)實(shí)數(shù)根;
(2)設(shè)方程的兩個(gè)實(shí)數(shù)根分別是,若y1是關(guān)于x的函數(shù),且,其中m=,求這個(gè)函數(shù)的解析式;
(3)設(shè)y2=kx2+(3k+1)x+2k+1,若該一元二次方程只有整數(shù)根,且k是小于0 的整數(shù).結(jié)合函數(shù)的圖象回答:當(dāng)自變量x滿足什么條件時(shí),y2>y1?
【房山一!8、已知:二次函數(shù)y=ax2-x+c的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,對(duì)稱軸是直線x=,且圖象向右平移一個(gè)單位后經(jīng)過(guò)坐標(biāo)原點(diǎn)O.
(1)求這個(gè)二次函數(shù)的解析式;
(2)求△ABC的外接圓圓心D的坐標(biāo)及⊙D的半徑;
(3)設(shè)⊙D的面積為S,在拋物線上是否存在點(diǎn)M,使得S△ACM=,若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【房山一!9、已知:△ABC和△ADE均為等腰直角三角形, ∠ABC=∠ADE=, AB= BC,AD=DE,按圖1放置,使點(diǎn)E在BC上,取CE的中點(diǎn)F,聯(lián)結(jié)DF、BF.
(1)探索DF、BF的數(shù)量關(guān)系和位置關(guān)系,并證明;
(2)將圖1中△ADE繞A點(diǎn)順時(shí)針旋轉(zhuǎn),再聯(lián)結(jié)CE,取CE的中點(diǎn)F(如圖2),問(wèn)(1)中的結(jié)論是否仍然成立?證明你的結(jié)論;
(3)將圖1中△ADE繞A點(diǎn)轉(zhuǎn)動(dòng)任意角度(旋轉(zhuǎn)角在到之間),再聯(lián)結(jié)CE,取CE的中點(diǎn)F(如圖3),問(wèn)(1)中的結(jié)論是否仍然成立?證明你的結(jié)論
圖1 圖2 圖3
【門(mén)頭溝一!10、已知以x為自變量的二次函數(shù)y=x2+2mx+m-7.
(1)求證:不論m為任何實(shí)數(shù),二次函數(shù)的圖象與x軸都有兩個(gè)交點(diǎn);
(2)若二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)在點(diǎn)(1,0)的兩側(cè),關(guān)于x的一元二次方程m2x2+(
(3)在(2)的條件下,關(guān)于x的另一方程 x2+2(a+m)x+
【門(mén)頭溝一!11、在平面直角坐標(biāo)系xOy中,拋物線 y=-x2+bx+c與x軸交于A、B 兩點(diǎn)(點(diǎn)A在
點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D,且點(diǎn)B的坐標(biāo)為(1,0), 點(diǎn)C的坐標(biāo)
為(0,3).
(1)求拋物線及直線AC的解析式;
(2)E、F是線段AC上的兩點(diǎn),且∠AEO=∠ABC,過(guò)點(diǎn)F作與y軸平行的直線交拋物線于點(diǎn)M,交x軸于點(diǎn)N.當(dāng)MF=DE時(shí),在x軸上是否存在點(diǎn)P,使得以點(diǎn)P、A、F、M為頂點(diǎn)的四邊形是梯形? 若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)Q是位于拋物線對(duì)稱軸左側(cè)圖象上的一點(diǎn),試比較銳角∠QCO與∠BCO 的大小(直接寫(xiě)出結(jié)果,不要求寫(xiě)出求解過(guò)程,但要寫(xiě)出此時(shí)點(diǎn) Q的橫坐標(biāo)x的取值范圍).
【門(mén)頭溝一!12、如圖1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,點(diǎn)E在AB上, F是線段BD的中點(diǎn),連結(jié)CE、FE.
(1)請(qǐng)你探究線段CE與FE之間的數(shù)量關(guān)系(直接寫(xiě)出結(jié)果,不需說(shuō)明理由);
(2)將圖1中的△AED繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使△AED的一邊AE恰好與△ACB的邊AC在同一條直線上(如圖2),連結(jié)BD,取BD的中點(diǎn)F,問(wèn)(1)中的結(jié)論是否仍然成立,并說(shuō)明理由;
(3)將圖1中的△AED繞點(diǎn)A順時(shí)針旋轉(zhuǎn)任意的角度(如圖3),連結(jié)BD,取BD的中點(diǎn)F,問(wèn)(1)中的結(jié)論是否仍然成立,并說(shuō)明理由.
【延慶一!13、(本題滿分4分) 如圖1,把一張標(biāo)準(zhǔn)紙一次又一次對(duì)開(kāi),得到“2開(kāi)”紙、“4開(kāi)”紙、“8開(kāi)”紙、“16開(kāi)”紙….已知標(biāo)準(zhǔn)紙的短邊長(zhǎng)為.
(1)如圖2,把這張標(biāo)準(zhǔn)紙對(duì)開(kāi)得到的“16開(kāi)”紙按如下步驟折疊:
第一步:將矩形的短邊與長(zhǎng)邊對(duì)齊 折疊, 點(diǎn)落在上的點(diǎn)處,鋪平后 得折痕;
第二步:將長(zhǎng)邊與折痕對(duì)齊折疊,點(diǎn)正好與點(diǎn)重合,鋪平后得折痕.則的值是 .
(2)求“2開(kāi)”紙長(zhǎng)與寬的比__________.
(3)如圖3,由8個(gè)大小相等的小正方形構(gòu)成“”型圖案,它的四個(gè)頂點(diǎn)分別在“16開(kāi)”紙的邊上,求的長(zhǎng).
【延慶一!14、 閱讀理解:對(duì)于任意正實(shí)數(shù),,,
,只有當(dāng)時(shí),等號(hào)成立.
結(jié)論:在(均為正實(shí)數(shù))中,若為定值,則,
只有當(dāng)時(shí),有最小值.
根據(jù)上述內(nèi)容,回答下列問(wèn)題:
(1) 若,只有當(dāng) 時(shí),有最小值 .
(2) 探索應(yīng)用:已知,,點(diǎn)P為雙曲線上的任意一點(diǎn),過(guò)點(diǎn)作軸于點(diǎn),.
求四邊形面積的最小值,并說(shuō)明此時(shí)四邊形的形狀.
【延慶一模】15、如圖24-1,正方形ABCD和正方形QMNP, M是正方形ABCD的對(duì)稱中心,MN交AB于F,QM交AD于E.
(1)猜想:ME 與MF的數(shù)量關(guān)系
(2)如圖24-2,若將原題中的“正方形”改為“菱形”,且∠M =∠B,其它條件不變,探索線段ME與線段MF的數(shù)量關(guān)系,并加以證明.
(3)如圖24-3,若將原題中的“正方形”改為“矩形”,且AB:BC=1:2,其它條件不變,探索線段ME與線段MF的數(shù)量關(guān)系,并說(shuō)明理由.
(4)如圖24-4,若將原題中的“正方形”改為平行四邊形,且∠M =∠B ,
AB:BC = m,其它條件不變,求出ME:MF的值。(直接寫(xiě)出答案)
【延慶一模】16、 在平面直角坐標(biāo)系中,拋物線的對(duì)稱軸為x=2,且經(jīng)過(guò)B(0,4),C(5,9),直線BC與x軸交于點(diǎn)A.
(1)求出直線BC及拋物線的解析式.
(2)D(1,y)在拋物線上,在拋物線的對(duì)稱軸上是否存在兩點(diǎn)M、N,且MN=2 ,點(diǎn)M在點(diǎn)N的上方,使得四邊形BDNM的周長(zhǎng)最小,若存在,求出M 、N兩點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
(3)現(xiàn)將直線BC繞B點(diǎn)旋轉(zhuǎn)與拋物線相交于另一點(diǎn)P,請(qǐng)找出拋物線上所有滿足到直線BC距離為的點(diǎn)P.
09年北京中考?jí)狠S題精選答案
(海淀一模)1.解:
(1)比如: 或 ………………1分
(2)①S1 +S4 = S2 +S3, S1 +S3 = S2 +S4或S1×S3 = S2×S4或等. ……………2分
②S1×S3 = S2×S4或等. ……………………………………………4分
(海淀一模)2、(1)解:由 kx=x+2,得(k-1) x=2.
依題意 k-1≠0.
∴ . ……………………………………………………………1分
∵ 方程的根為正整數(shù),k為整數(shù),
∴ k-1=1或k-1=2.
∴ k1= 2, k2=3. ……………………………………………………………2分
(2)解:依題意,二次函數(shù)y=ax2-bx+kc的圖象經(jīng)過(guò)點(diǎn)(1,0),
∴ 0 =a-b+kc, kc = b-a .
∴
= …………………………3分
(3)證明:方程②的判別式為 Δ=(-b)2-4ac= b2-4ac.
由a≠0, c≠0, 得ac≠0.
( i ) 若ac<0, 則
根. ………………………………………………………………4分
( ii ) 證法一: 若ac>0, 由(2)知a-b+kc =0, 故 b=a+kc.
Δ=b2-4ac= (a+kc)2-4ac=a2+2kac+(kc)2-4ac = a2-2kac+(kc)2+4kac-4ac
=(a-kc)2+
∵ 方程kx=x+2的根為正實(shí)數(shù),
∴ 方程(k-1) x=2的根為正實(shí)數(shù).
由 x>0, 2>0, 得 k-1>0. …………………………………………………6分
∴ 4ac(k-1)>0.
∵ (a-kc)2³0,
∴Δ=(a-kc)2+4ac(k-1)>0. 此時(shí)方程②有兩個(gè)不相等的實(shí)數(shù)根. …………7分
證法二: 若ac>0,
∵ 拋物線y=ax2-bx+kc與x軸有交點(diǎn),
∴ Δ1=(-b)2-4akc =b2-4akc³0.
(b2
由證法一知 k-1>0,
∴ b2-4ac> b2-4akc³0.
∴ Δ= b2-4ac>0. 此時(shí)方程②有兩個(gè)不相等的實(shí)數(shù)根. …………………7分
綜上, 方程②有兩個(gè)不相等的實(shí)數(shù)根.
(海淀一模)3、 解: (1)DF= EF. …………………………………………………1分
(2)猜想:DF= FE.
證明:過(guò)點(diǎn)D作DG⊥AB于G, 則∠DGB=90°.
∵ DA=DB, ∠ADB=60°.
∴ AG=BG, △DBA是等邊三角形.
∴ DB=BA.
∵ ∠ACB=90° , ∠ABC=30°,
∴ AC=AB=BG. …………………………………………………………2分
∴ △DBG≌△BAC.
∴ DG=BC. ……………………………………………………3分
∵ BE=EC, ∠BEC=60° ,
∴ △EBC是等邊三角形.
∴ BC=BE, ∠CBE=60°.
∴ DG= BE, ∠ABE=∠ABC+∠CBE=90° .
∵ ∠DFG =∠EFB, ∠DGF =∠EBF,
∴ △DFG≌△EFB.
∴ DF= EF. ……………………………………………………4分
(3)猜想:DF= FE.
證法一:過(guò)點(diǎn)D作DH⊥AB于H, 連接HC, HE, HE交CB于K, 則∠DHB=90°.
∵ DA=DB,
∴ AH=BH, ∠1=∠HDB.
∵ ∠ACB=90°,
∴ HC=HB.
∵ EB=EC, HE=HE,
∴ △HBE≌△HCE. ……………………………5分
∴ ∠2=∠3, ∠4=∠BEH.
∴ HK⊥BC.
∴ ∠BKE=90°. ……………………………6分
∵ ∠ADB=∠BEC=2∠ABC,
∴ ∠HDB=∠BEH=∠ABC.
∴ ∠DBC=∠DBH+∠ABC =∠DBH+∠HDB=90°,
∠EBH=∠EBK+∠ABC =∠EBK+∠BEK=90°.
∴ DB//HE, DH//BE.
∴ 四邊形DHEB是平行四邊形.
∴ DF=EF. ………………………………………………………………………7分
證法二:分別過(guò)點(diǎn)D、E作DH⊥AB于H, EK⊥BC于K, 連接HK, 則
∠DHB=∠EKB=90°.
∵ ∠ACB=90°,
∴ EK//AC.
∵ DA=DB, EB=EC,
∴ AH=BH, ∠1=∠HDB,
CK=BK, ∠2=∠BEK.
∴ HK//AC.
∴ 點(diǎn)H、K、E在同一條直線上. …………………5分
下同證法一.
(海淀一模)4、解:(1)依題意, 設(shè)所求拋物線的解析式為, 則
………………1分
∴ 所求拋物線的解析式為 . ……………………………………2分
由, 解得x1=4, x2= -3.
∴ D(4, 0). …………………………………………………………………………3分
(2)如圖, 過(guò)點(diǎn)C作CN⊥x軸于N, 過(guò)點(diǎn)E、B分別
作x軸、y軸的垂線,兩線交于點(diǎn)M.
∴ ∠M=∠CNE=90°.
設(shè)E(a, 0), EB=EC.
∴ BM2+EM2= CN2+EN2.
∴ .
解得 a=-1.
∴ E( -1, 0). ……………………………4分
(3)可求得直線BC的解析式為y=-x+5.
從而直線BC與x軸的交點(diǎn)為H(5, 0).
如圖,根據(jù)軸對(duì)稱性可知S△E ¢FG=S△EFG,
當(dāng)點(diǎn)E¢在BC上時(shí),點(diǎn)F是BE的中點(diǎn).
∵ FG//BC,
∴ △EFP∽△EBH.
可證 EP=PH.
∵ E(-1,0), H(5, 0),
∴ P(2, 0). ……………………………5分
( i ) 如圖, 分別過(guò)點(diǎn)B、C作BK⊥ED于K,
CJ⊥ED于J ,
則.
當(dāng)-1< x £2時(shí),
∵ PF//BC,
∴ △EGP∽△ECH,△EFG∽△EBC.
∴ ,
∵ P(x, 0), E(-1, 0), H(5,0),
∴ EP=x+1, EH=6.
∴ . …………………6分
( ii ) 如圖,當(dāng)2< x £4時(shí), 在x軸上截取一點(diǎn)Q, 使得PQ=HP, 過(guò)點(diǎn)Q作
QM//FG, 分別交EB、EC于M、N.
可證S=S四邊形MNGF, △ENQ∽△ECH,△EMN∽△EBC.
∴ ,
∵ P(x, 0), E(-1, 0), H(5,0),
∴ EH=6,PQ=PH=5-x, EP=x+1,
EQ=6-2(5-x)=2x-4.
∴ ……………7分
同(i)可得 ,
∴ .…………8分
綜上,
(東城一模)5、(1)證明:
∴方程有兩個(gè)不相等的實(shí)數(shù)根!撤
(2)
∵方程有兩個(gè)整數(shù)根,必須使且m為整數(shù).
又∵12<m<40,
∴ 5<<9.
∴m=24……7分
(東城一模)6、解:(1)過(guò)點(diǎn)B作,垂足為D,
∵
∴
又∵
∴△≌△,
∴==1,==2;
∴點(diǎn)B的坐標(biāo)為(-3,1); …………… 2分
(2)拋物線經(jīng)過(guò)點(diǎn)B(-3,1),則得到,
解得,∴拋物線解析式為; ………………3分
(3)方法一:①若以AC為直角邊,點(diǎn)C為直角頂點(diǎn);
則可以設(shè)直線BC交拋物線于點(diǎn),
由題意,直線BC的解析式為:,
解得
∴P1(1,-1).………4分
②若以AC為直角邊,點(diǎn)A為直角頂點(diǎn);
則過(guò)點(diǎn)A作AF∥BC,交拋物線于點(diǎn),
由題意,直線AF的解析式為
綜上所述,在拋物線上存在點(diǎn)使△ACP是以AC為直角邊的等腰直角三角形。
方法二:①若以AC為直角邊,點(diǎn)C為直角頂點(diǎn);
則延長(zhǎng)至點(diǎn),使得,得到等腰直角三角形△,過(guò)點(diǎn)作,
∵1=,,;∴△≌△
∴==2, ∴==1, 可求得點(diǎn)P1(1,-1);…………………4分
經(jīng)檢驗(yàn)點(diǎn)P1(1,-1)在拋物線上,使得△是等腰直角三角形;
………………… 5分
②若以AC為直角邊,點(diǎn)A為直角頂點(diǎn);則過(guò)點(diǎn)A作,且使得,
得到等腰直角三角形△,過(guò)點(diǎn)P2作,同理可證△≌△;
∴==2, == 1, 可求得點(diǎn)(2,1);……………… 6分
經(jīng)檢驗(yàn)點(diǎn)(2,1)也在拋物線上,使得△也是等腰直角三角形.
………………7分
(東城一模)7、解:(1)AC過(guò)圓心O,且m,n分別切⊙O于點(diǎn)A,C
(2)連接OA
∴△AEC∽△PAQ.
①
同理可得:②
①+②,得
(房山一模)8、(1)證明:△=
=
=
=≥0 ------------1分
∴方程必有兩個(gè)實(shí)數(shù)根 -------------2分
(2)用求根公式解出,-------3分
∴=
∴ ----------4分
(3)∵方程只有整數(shù)根且k是小于0 的整數(shù)
∴k=-1 ----------5分
∴=-x2-2x-1
=x-1 ----------------6分
在坐標(biāo)系中畫(huà)出兩函數(shù)的圖象,由圖象可知:當(dāng)-3<x<0時(shí), >.---------7分
(房山一模)9、解:(1)∵拋物線的對(duì)稱軸是直線x=
∴- ∴a=1, ----------------------------1分
∵拋物線向右平移一個(gè)單位過(guò)坐標(biāo)原點(diǎn)(0,0),∴原拋物線過(guò)點(diǎn)(-1,0)
∴c=-2
∴拋物線的解析式為 ---------------------------2分
(2)∵OC=OB=2,線段BC的垂直平分線為直線y=-x
∵拋物線的對(duì)稱軸為直線x=
∴△ABC外接圓⊙D的圓心D(,-) ----------------------3分
∵∠ABC=45°,∴∠ADC=90°
∵AC= ,
∴AD=,即△ABC外接圓半徑為-----4分
(3) ∵S=,=6,
∴S△ACM=6 ----------5分
過(guò)點(diǎn)M作EF∥AC交x軸于E,交y軸于F,
A(-1,0),B(2,0),C(0,-2)
∴直線EF的解析式為: ------------------------6分
設(shè)點(diǎn)M的坐標(biāo)為(x,)
∵M(jìn)(x,)在直線EF上
∴=+10,∴ ,
∴在拋物線上存在點(diǎn)M使得S△ACM=,且M1(3,4),M2(-4,18).----------7分
(房山一模)10、 解:(1)DF=BF且DF⊥BF.-----------------1分
證明:如圖1:
∵∠ABC=∠ADE=,AB= BC,AD=DE
∴ ∠CDE=,∠AED=∠ACB=45°
∵F為CE的中點(diǎn)
∴ DF=EF=CF=BF,
∴ DF=BF; ------------------2分
∴ ∠DFE=2∠DCF,∠BFE=2∠BCF,
∴∠EGF+∠CGF=2∠DCB=90°, 圖1
即:∠DFB=,
∴DF⊥BF. -------------------3分
(2)仍然成立.
證明:如圖2,延長(zhǎng)DF交BC于點(diǎn)G,
∵∠ABC=∠ADE=
∴ DE∥BC,
∴∠DEF=∠GCF,
又∵ EF=CF,∠DFE=∠GFC
∴ △DEF≌△GCF,∴DE=CG,DF=FG-----------4分
∵AD=DE,AB=BC,∴AD=CG
∴ BD=BG ---------------5分
又∵∠ABC= 圖2
∴ EG=CG且EG⊥CG. ---------------6分
(3)仍然成立.
證明:如圖3,延長(zhǎng)BF至點(diǎn)G,使FG=BF,聯(lián)結(jié)DB、DG,GE
∵EF=CF, ∠EFG=∠CFB
∴ △EFG≌△CFB,
∴ EG=CB,∠EGF=∠CBF,
∴EG∥CB,
∵AB= BC,AB⊥CB,∴ EG=AB,EG⊥AB,
∵∠ADE=90°,EG⊥AB
∴∠DAB=∠DGE
∴ △DAB≌△DEG,
∴ DG=DB, ∠ADB=∠EDG -----------------7分
∴∠BDG=∠ADE=90° 圖3
∴△BGD為等腰直角三角形,
∴ DF=BF且DF⊥BF. ----------------8分
(門(mén)頭溝一模)11、(1)證明:令.
得△==
2009年浙江省寧?h知恩中學(xué)高三最后適應(yīng)性考試
理科綜合 2009.04
本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分。滿分300分?荚嚂r(shí)間150分鐘。
第I卷(選擇題,共21題,共126分)
2009屆晉州一中高三理綜最后模擬(物理部分)
廣東省華南師大附中2007―2008學(xué)年度高三綜合測(cè)試(四)
數(shù)學(xué)試題(理科)
本試卷分選擇題和非選擇題兩部分,滿分150分,考試用時(shí)120分鐘。
注意事項(xiàng):
1.答卷前,考生務(wù)必用黑色字跡的鋼筆或簽字筆將自己的校名、姓名、考號(hào)填寫(xiě)在答題卡的密封線內(nèi)。
2.選擇題每小題選出答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其它答案;不能答在試卷上。
3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在別發(fā)的答題卷各題目指定區(qū)域內(nèi)的相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用鉛筆和涂改液,不按以上要求作答的答案無(wú)效。
4.考生必須保持答題卡的整潔,考試結(jié)束后,將答題卷和答題卡一并收回。
參考公式:
球的表面積公式 , 其中R表示球的半徑
球的體積公式 ,其中R表示球的半徑
第一部分(選擇題,共40分)
山東省淄博市2008―2009學(xué)年度高三檢測(cè)題
語(yǔ)文試題
本試卷分第1卷和第Ⅱ卷兩部分。滿分150分。考試用時(shí)150分鐘。
注意事項(xiàng):
1.答題前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、座號(hào)、考號(hào)填寫(xiě)在答題卡
和試題卷規(guī)定的位置上。
2.第1卷每小題選出答案后。用2B鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑;如需
改動(dòng)。用橡皮擦干凈后。再選涂其他答案標(biāo)號(hào)。答案不能答在試題卷上。 ,
3.第Ⅱ卷必須用O.5毫米黑色簽字筆作答。答案必須寫(xiě)在答題卡各題目的指定區(qū)域
內(nèi)相應(yīng)的位置,不能寫(xiě)在試題卷上;如需改動(dòng),先劃掉原來(lái)的答案,然后寫(xiě)上新的答案;不準(zhǔn)使用涂改液、修正帶。不按以上要求作答的答案無(wú)效。
4.第Ⅱ卷第六題為選做題?忌殢乃o(一)(二)兩題中任選一題作答,不能全選。
第1卷(選擇題共36分)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com