科目: 來源:2004全國各省市高考模擬試題匯編(天利38套)·數(shù)學(xué) 題型:044
已知f(x)是定義在[-1,1]上的奇函數(shù).當(dāng)a,b∈[-1,1],且a+b≠0時(shí),有>0.
(Ⅰ)判斷函數(shù)f(x)的單調(diào)性,并給以證明;
(Ⅱ)(理)若f(1)=1且f(x)≤m2-2bm+1對(duì)所有x∈[-1,1],b∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源:2004全國各省市高考模擬試題匯編(天利38套)·數(shù)學(xué) 題型:044
二次函數(shù)f(x)=ax2+bx+c(a、b、c∈R,a≠0).
(Ⅰ)對(duì)于x1、x2∈R,且x1<x2,f(x1)≠f(x2),求證:方程f(x)=[f(x1)+f(x2)]有不相等的兩實(shí)根,且必有一根屬于(x1、x2);
(Ⅱ)若方程f(x)=[f(x1)+f(x2)]在(x1、x2)內(nèi)的實(shí)根為m,且x1、m-、x2成等差數(shù)列,設(shè)x=x0是f(x)的對(duì)稱軸方程.
求證:x0<m2;
(Ⅲ)若a>0,f(0)=1,方程f(x)=x的兩實(shí)根為α、β,當(dāng)|β|<2,
|α-β|=2時(shí),求b的取值范圍.
查看答案和解析>>
科目: 來源:2004全國各省市高考模擬試題匯編(天利38套)·數(shù)學(xué) 題型:044
定義域?yàn)镽的函數(shù)f(x)滿足:對(duì)于任意的實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且當(dāng)x>0時(shí)f(x)<0恒成立.
(1)判斷函數(shù)f(x)的奇偶性,并證明你的結(jié)論;
(2)證明f(x)為減函數(shù);若函數(shù)f(x)在[-3,3)上總有f(x)≤6成立,試確定f(1)應(yīng)滿足的條件;
(3)解關(guān)于x的不等式f(ax2)-f(x)>f(a2x)-f(a),(n是一個(gè)給定的自然數(shù),a<0.)
查看答案和解析>>
科目: 來源:2004全國各省市高考模擬試題匯編(天利38套)·數(shù)學(xué) 題型:044
通過研究學(xué)生的學(xué)習(xí)行為,專家發(fā)現(xiàn),學(xué)生的注意力隨著老師講課時(shí)間的變化而變化,講課開始時(shí),學(xué)生的興趣激增;中間有一段時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散,設(shè)f(t)表示學(xué)生注意力隨時(shí)間t(分鐘)的變化規(guī)律(f(t)越大,表明學(xué)生注意力越集中),經(jīng)過實(shí)驗(yàn)分析得知:
f(t)=
(1)講課開始后多少分鐘,學(xué)生的注意力最集中?能持續(xù)多少分鐘?
(2)講課開始后5分鐘與講課開始后25分鐘比較,何時(shí)學(xué)生的注意力更集中?
(3)一道數(shù)學(xué)難題,需要講解24分鐘,并且要求學(xué)生的注意力至少達(dá)到180,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生達(dá)到所需的狀態(tài)下講授完這道題目?
查看答案和解析>>
科目: 來源:2004全國各省市高考模擬試題匯編(天利38套)·數(shù)學(xué) 題型:044
單擺從某點(diǎn)開始來回?cái)[動(dòng),離開平衡位置的距離s(厘米)與擺動(dòng)時(shí)間t(秒)的函數(shù)關(guān)系為:s=6
(1)作出它的圖像(一個(gè)周期區(qū)間);
(2)單擺開始擺動(dòng)(t=0)時(shí),離開平衡位置多少厘米?
(3)單擺擺動(dòng)到最右邊時(shí),離開平衡位置多少厘米?
(4)單擺來回?cái)[動(dòng)一次需要多少時(shí)間?
查看答案和解析>>
科目: 來源:2004全國各省市高考模擬試題匯編(天利38套)·數(shù)學(xué) 題型:044
設(shè)m∈N,F(xiàn)(m)表示log2m的整數(shù)部分.
(Ⅰ)求F(1),F(xiàn)(2),F(xiàn)(3);
(Ⅱ)求滿足F(m)=3的m的值;
(Ⅲ)(文科做)求:F(2n+1)+F(2n+2)+F(2n+3)+…+F(2n+1)(n∈N);
(理科做)求證:F(1)+F(2)+F(3)+…+F(2n)=(n-2)·2n+n+2(n∈N).
查看答案和解析>>
科目: 來源:2004全國各省市高考模擬試題匯編(天利38套)·數(shù)學(xué) 題型:044
已知f(x)=x3+bx2+cx+d在(-∞,0)上是增函數(shù),在[0,2]上是減函數(shù),且方程f(x)=0有三個(gè)根,它們分別為α,2,β.
(Ⅰ)求c的值;
(Ⅱ)求證:f(1)≥2;
(Ⅲ)求|α-β|的取值范圍.
查看答案和解析>>
科目: 來源:2004全國各省市高考模擬試題匯編(天利38套)·數(shù)學(xué) 題型:044
某廠在一個(gè)空間容積為2000m3的密封車間內(nèi)生產(chǎn)某種化學(xué)藥品.開始生產(chǎn)后,每滿60分鐘會(huì)一次性釋放出有害氣體am3,并迅速擴(kuò)散到空氣中.每次釋放有害氣體后,車間內(nèi)的凈化設(shè)備隨即自動(dòng)工作20分鐘,將有害氣體的含量降至該車間內(nèi)原有有害氣體含量的r%,然后停止工作,待下一次有害氣體釋放后再繼續(xù)工作.安全生產(chǎn)條例規(guī)定:只有當(dāng)車間內(nèi)的有害氣體總量不超過1.25am3時(shí)才能正常進(jìn)行生產(chǎn).
(Ⅰ)當(dāng)r=20時(shí),該車間能否連續(xù)正常生產(chǎn)6.5小時(shí)?請(qǐng)說明理由;
(Ⅱ)能否找到一個(gè)大于20的數(shù)據(jù)r,使該車間能連續(xù)正常生產(chǎn)6.5小時(shí)?請(qǐng)說明理由;
(Ⅲ)(本小題為附加題,如果解答正確,加4分,但全卷總分不超過150分)
已知該凈化設(shè)備的工作方式是:在向外釋放出室內(nèi)混合氣體(空氣和有害氣體)的同時(shí)向室內(nèi)放入等體積的新鮮空氣.已知該凈化設(shè)備的換氣量是200m3/分,試證明該設(shè)備連續(xù)工作20分鐘能夠?qū)⒂泻怏w含量降至原有有害氣體含量的20%以下.(提示:我們可以將凈化過程劃分成n次,且n趨向于無窮大.)
查看答案和解析>>
科目: 來源:2004全國各省市高考模擬試題匯編(天利38套)·數(shù)學(xué) 題型:044
已知函數(shù)f(x)=,g(x)=x+a(a>0).
(1)求a的值,使點(diǎn)M(f(x),g(x))到直線x+y-1=0的距離最短為;
(2)若不等式≤1在x∈[1,4]恒成立,求a的取值范圍.
查看答案和解析>>
科目: 來源:2004全國各省市高考模擬試題匯編(天利38套)·數(shù)學(xué) 題型:044
一列火車自A城駛往B城,沿途有n個(gè)車站(包括起點(diǎn)站A和終點(diǎn)站B),車上有一節(jié)郵政車廂,每?恳徽颈阋断虑懊娓髡景l(fā)往該站的郵袋各一個(gè),同時(shí)又要裝上該站發(fā)往后面各站的郵袋各一個(gè),試求:
(1)列車從第k站出發(fā)時(shí),郵政車廂內(nèi)共有郵袋數(shù)是多少?
(2)第幾站的郵袋數(shù)最多?最多是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com