【題目】已知函數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)求函數(shù)的極值.
【答案】(1) 時(shí), 遞減; 時(shí), 遞增;(2)見解析.
【解析】分析:(1)求得函數(shù),代入,得,設(shè),得,得到函數(shù)的單調(diào)性,進(jìn)而求得函數(shù)的單調(diào)性;
(2)由(1),得到,由在區(qū)間遞減,在遞增,得到時(shí),分類討論即可求得的極值.
詳解:(1)函數(shù)的定義域?yàn)?/span>,其導(dǎo)數(shù)為.當(dāng)時(shí),
設(shè),則,顯然時(shí)遞增;
時(shí), 遞減,故,于是,
所以時(shí), 遞減; 時(shí), 遞增;
(2)由(1)知,
函數(shù)在遞增,在遞減,所以
又當(dāng)時(shí), ,
討論:
①當(dāng)時(shí), ,此時(shí):
因?yàn)?/span>時(shí), 遞增; 時(shí), 遞減;
所以,無極小值;
②當(dāng)時(shí), ,此時(shí):
因?yàn)?/span>時(shí), 遞減; 時(shí), 遞增;
所以,無極大值;
③當(dāng)時(shí),
又在遞增,所以在上有唯一零點(diǎn),且,
易證: 時(shí), ,所以,
所以
又在遞減,所以在上有唯一零點(diǎn),且,故:
當(dāng)時(shí), 遞減;當(dāng), 遞增;
當(dāng)時(shí), 遞減;當(dāng), 遞增;
所以, , ,
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),,.記集合,,若、分別表示集合,的元素個(gè)數(shù),則下列結(jié)論不可能的是( )
A.,B.,
C.,D.,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)氣象中心觀察和預(yù)測:發(fā)生于M地的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時(shí)間t(h)的函數(shù)圖象如圖所示,過線段OC上一點(diǎn)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即為t(h)內(nèi)沙塵暴所經(jīng)過的路程s(km).
(1)當(dāng)時(shí),求s的值;
(2)將s隨t變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來;
(3)若N城位于M地正南方向,且距M地650km,試判斷這場沙塵暴是否會侵襲到N城,如果會,在沙塵暴發(fā)生后多長時(shí)間它將侵襲到N城?如果不會,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】判斷下列全稱量詞命題的真假:
(1)每一個(gè)末位是0的整數(shù)都是5的倍數(shù);
(2)線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等;
(3)對任意負(fù)數(shù)的平方是正數(shù);
(4)梯形的對角線相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中:
①若函數(shù)的定義域?yàn)?/span>,則一定是偶函數(shù);
②若是定義域上奇函數(shù),,都有,則的圖像關(guān)于直線對稱;
③已知,是函數(shù)的定義域內(nèi)的任意兩個(gè)值,且,若,則是定義域減函數(shù);
④已知是定義在上奇函數(shù),且也為奇函數(shù),則是以4為周期的周期函數(shù)。
其中真命題的有_____________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中, 平面,直線與平面所成的角為30°,為的中點(diǎn).
(Ⅰ)求證:平面平面;
(Ⅱ)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】判斷下列命題的真假,并寫出這些命題的否定:
(1)平面直角坐標(biāo)系下每條直線都與x軸相交;
(2)每個(gè)二次函數(shù)的圖象都是軸對稱圖形;
(3)存在一個(gè)三角形,它的內(nèi)角和小于180°;
(4)存在一個(gè)四邊形,它的四個(gè)頂點(diǎn)不在同一個(gè)圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在實(shí)數(shù)集上的偶函數(shù)和奇函數(shù)滿足.
(1)求與的解析式;
(2)求證:在區(qū)間上單調(diào)遞增;并求在區(qū)間的反函數(shù);
(3)設(shè)(其中為常數(shù)),若對于恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列滿足,,,.s
(1)證明:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng);
(2)求數(shù)列的通項(xiàng),并求數(shù)列的前項(xiàng)和;
(3)若,且是單調(diào)遞增數(shù)列,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com