【題目】據(jù)氣象中心觀察和預(yù)測(cè):發(fā)生于M地的沙塵暴一直向正南方向移動(dòng),其移動(dòng)速度v(km/h)與時(shí)間t(h)的函數(shù)圖象如圖所示,過線段OC上一點(diǎn)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即為t(h)內(nèi)沙塵暴所經(jīng)過的路程s(km)

(1)當(dāng)時(shí),求s的值;

(2)st變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來(lái);

(3)N城位于M地正南方向,且距M650km,試判斷這場(chǎng)沙塵暴是否會(huì)侵襲到N城,如果會(huì),在沙塵暴發(fā)生后多長(zhǎng)時(shí)間它將侵襲到N城?如果不會(huì),請(qǐng)說明理由.

【答案】124km23)沙塵暴發(fā)生30h后將侵襲到N城.

【解析】

(1)根據(jù)圖象,計(jì)算可得答案;

(2)根據(jù)圖像分三段寫出函數(shù)解析式,再寫成分段函數(shù)的形式;

(3)根據(jù)分段函數(shù)解析式,計(jì)算出時(shí),函數(shù)的最大值,兩個(gè)最大值都小于650,所以時(shí), 這場(chǎng)沙塵暴不會(huì)侵襲到N城,在時(shí),,解得即可得到答案.

解:(1)由圖像可知,當(dāng)時(shí),,所以km

2)當(dāng)時(shí),;

當(dāng)時(shí),

當(dāng)時(shí),

綜上可知,

3)因?yàn)楫?dāng)時(shí),,

當(dāng)時(shí),,

所以當(dāng)時(shí),令,

解得.

因?yàn)?/span>,所以

故沙塵暴發(fā)生30h后將侵襲到N城.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.

(1)求曲線的普通方程;

(2)若與曲線相切,且與坐標(biāo)軸交于兩點(diǎn),求以為直徑的圓的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是滿足下列條件的集合:①,;②若,則;③若,則

1)判斷是否正確,說明理由;

2)證明:的充分條件;

3)證明:若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)是定義在R上的函數(shù),對(duì)mn∈R,恒有f(mn)=f(mf(n)(f(m)≠0,f(n)≠0),且當(dāng)x>0時(shí),0<f(x)<1.

(1)求證f(0)=1;

(2)求證x∈R時(shí),恒有f(x)>0;

(3)求證f(x)在R上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出以下四個(gè)結(jié)論:

函數(shù)是偶函數(shù);

當(dāng)時(shí),函數(shù)的值域是;

若扇形的周長(zhǎng)為,圓心角為,則該扇形的弧長(zhǎng)為6cm

已知定義域?yàn)?/span>的函數(shù),當(dāng)且僅當(dāng)時(shí),成立.

⑤函數(shù)的最小正周期是

則上述結(jié)論中正確的是______(寫出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在矩形中,,,的中點(diǎn),中點(diǎn).將沿折起到,使得平面平面(如圖2).

(1)求證:;

(2)求直線與平面所成角的正弦值;

(3)在線段上是否存在點(diǎn),使得平面? 若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一個(gè)“蝴蝶形圖案(陰影區(qū)域)”,其中是過拋物線的兩條互相垂直的弦(點(diǎn)在第二象限),且交于點(diǎn),點(diǎn)軸上一點(diǎn),,其中為銳角

(1)設(shè)線段的長(zhǎng)為,將表示為關(guān)于的函數(shù)

(2)求“蝴蝶形圖案”面積的最小值,并指出取最小值時(shí)的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(2)求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,已知都是邊長(zhǎng)為的等邊三角形,中點(diǎn),且平面,為線段上一動(dòng)點(diǎn),記

(1)當(dāng)時(shí),求異面直線所成角的余弦值;

(2)當(dāng)與平面所成角的正弦值為時(shí),求的值

查看答案和解析>>

同步練習(xí)冊(cè)答案