【題目】下列命題中:
①若函數(shù)的定義域為,則一定是偶函數(shù);
②若是定義域上奇函數(shù),,都有,則的圖像關(guān)于直線對稱;
③已知,是函數(shù)的定義域內(nèi)的任意兩個值,且,若,則是定義域減函數(shù);
④已知是定義在上奇函數(shù),且也為奇函數(shù),則是以4為周期的周期函數(shù)。
其中真命題的有_____________
【答案】①③④
【解析】
由偶函數(shù)的定義,可判斷①的真假;由函數(shù)對稱性滿足的條件,及函數(shù)周期性的性質(zhì),可以
判斷②的真假;由減函數(shù)的定義,可判斷③的真假;由周期函數(shù)的定義及性質(zhì),可以判斷④
的真假,進而得到答案.
①,所以一定是偶函數(shù).故該命題正確;
②定義域為的奇函數(shù),對于任意的都有,則,
它表示函數(shù)是一個周期為2的周期函數(shù),其圖象不一定是軸對稱圖形,故②函數(shù)的圖
象關(guān)于直線對稱為假命題;
③若是減函數(shù),則要求任意,均有,故③為真命題;
④若是定義在上的奇函數(shù),且也為奇函數(shù),所以,
,所以是以4為周期
的周期函數(shù),故④為真命題.
故答案為:①③④
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)用籬笆圍一個面積為的矩形菜園,當這個矩形的邊長為多少時,所用籬笆最短?最短籬笆的長度是多少?
(2)用一段長為的籬笆圍成一個矩形菜園,當這個矩形的邊長為多少時,菜園的面積最大?最大面積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下四個結(jié)論:
①函數(shù)是偶函數(shù);
②當時,函數(shù)的值域是;
③若扇形的周長為,圓心角為,則該扇形的弧長為6cm;
④已知定義域為的函數(shù),當且僅當時,成立.
⑤函數(shù)的最小正周期是
則上述結(jié)論中正確的是______(寫出所有正確結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個“蝴蝶形圖案(陰影區(qū)域)”,其中是過拋物線的兩條互相垂直的弦(點在第二象限),且交于點,點為軸上一點,,其中為銳角
(1)設(shè)線段的長為,將表示為關(guān)于的函數(shù)
(2)求“蝴蝶形圖案”面積的最小值,并指出取最小值時的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黨的十九大報告指出,建設(shè)教育強國是中華民族偉大復(fù)興的基礎(chǔ)工程,必須把教育事業(yè)放在優(yōu)先位置,深化教育資源的均衡發(fā)展.現(xiàn)有4名男生和2名女生主動申請畢業(yè)后到兩所偏遠山區(qū)小學(xué)任教.將這6名畢業(yè)生全部進行安排,每所學(xué)校至少安排2名畢業(yè)生,則每所學(xué)校男女畢業(yè)生至少安排一名的概率為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】寫出下列命題的否定:
(1);
(2)所有可以被5整除的整數(shù),末位數(shù)字都是0;
(3);
(4)存在一個四邊形,它的對角線互相垂直.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)且,則“函數(shù)在上是減函數(shù)”是“函數(shù)在上是增函數(shù)”的( )條件.
A. 充分不必要 B. 必要不充分 C. 充要 D. 既不充分也不必要
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在九章算術(shù)中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬如圖,已知四棱錐為陽馬,且,底面若E是線段AB上的點含端點,設(shè)SE與AD所成的角為,SE與底面ABCD所成的角為,二面角的平面角為,則
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com