已知等差數(shù)列的首項,公差.且分別是等比數(shù)列的.
(1)求數(shù)列與的通項公式;
(2)設(shè)數(shù)列對任意自然數(shù)均有 成立,求的值.
(1),;(2).
解析試題分析:本題考查等差數(shù)列與等比數(shù)列的通項公式、前n項和公式等基礎(chǔ)知識,考查思維能力、分析問題與解決問題的能力.第一問,先用等差數(shù)列的通項公式將展開,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/12/1/eveo81.png" style="vertical-align:middle;" />成等比,利用等比中項列等式求,直接寫出的通項公式,通過求出來的得出和,寫出數(shù)列與的通項公式;第二問,用代替已知等式中的,得到新的等式,2個等式相減,把第一問的2通項公式代入得到的通項公式,注意的檢驗(yàn),最后利用等比數(shù)列的求和公式求和.
試題解析:(1) ∵且成等比數(shù)列
∴,即,
∴,
又∵,
∴.
(2)∵ ①
∴即,又 ②
①-②:
∴ 10分
∴ 11分
則
12分
考點(diǎn):1.等差數(shù)列的通項公式;2.等比中項;3.等比數(shù)列的前n項和公式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列{an}前n項和為Sn,點(diǎn)均在直線上.
(1)求數(shù)列{an}的通項公式;
(2)設(shè),Tn是數(shù)列{bn}的前n項和,試求Tn;
(3)設(shè)cn=anbn,Rn是數(shù)列{cn}的前n項和,試求Rn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知各項均為正數(shù)的數(shù)列滿足,且,其中.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設(shè)數(shù)列滿足是否存在正整數(shù)m、n(1<m<n),使得成等比數(shù)列?若存在,求出所有的m、n的值,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的前n項和為,
(I)證明:數(shù)列是等比數(shù)列;
(Ⅱ)若,數(shù)列的前n項和為,求不超過的最大整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前項和為,且,.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設(shè),求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中,,設(shè).
(Ⅰ)試寫出數(shù)列的前三項;
(Ⅱ)求證:數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;
(Ⅲ)設(shè)的前項和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足,(且).
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)令,記數(shù)列的前項和為,若恒為一個與無關(guān)的常數(shù),試求常數(shù)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
右表是一個由正數(shù)組成的數(shù)表,數(shù)表中各行依次成等差數(shù)列,各列依次成等比數(shù)列,且公比都相等,已知
(1)求數(shù)列的通項公式;
(2)設(shè)求數(shù)列的前項和。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com