設(shè)數(shù)列{an}前n項(xiàng)和為Sn,點(diǎn)均在直線上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè),Tn是數(shù)列{bn}的前n項(xiàng)和,試求Tn;
(3)設(shè)cn=anbn,Rn是數(shù)列{cn}的前n項(xiàng)和,試求Rn.

(1)(2)(3)

解析試題分析:(1)將點(diǎn)代入直線方程整理可得,用公式可推導(dǎo)出。(2)由可得,可證得數(shù)列為等比數(shù)列 ,用等比數(shù)列的前項(xiàng)和公式可求其前項(xiàng)和。(3)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0e/d/16cbo3.png" style="vertical-align:middle;" />等差等比,所以用錯(cuò)位相減法求數(shù)列的前項(xiàng)和。
試題解析:(1)依題意得,.        (1分)
當(dāng)時(shí),.        (2分)
當(dāng)時(shí), ; (4分)
所以.        (5分)
(2)由(1)得,        (6分)
,                     (7分)
,可知{bn}為首項(xiàng)為9,公比為9的等比數(shù)列. (8分)
.              (9分)
(3)由(1)、(2)得                  (10分)
     (11分)
   (12分)
       (13分)
                              (14分)
考點(diǎn):1公式法求數(shù)列的通項(xiàng)公式;2等比數(shù)列的定義;3等比數(shù)列的前項(xiàng)和;4錯(cuò)位相減法求數(shù)列的前項(xiàng)和。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

學(xué)校餐廳每天供應(yīng)500名學(xué)生用餐,每星期一有A,B兩種菜可供選擇。調(diào)查表明,凡是在這星期一選A菜的,下星期一會(huì)有改選B菜;而選B菜的,下星期一會(huì)有改選A菜。用分別表示第個(gè)星期選A的人數(shù)和選B的人數(shù).
⑴試用表示,判斷數(shù)列是否成等比數(shù)列并說(shuō)明理由;
⑵若第一個(gè)星期一選A神菜的有200人,那么第10個(gè)星期一選A種菜的大約有多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{Sn}的前n項(xiàng)和為Tn,滿足Tn=2Sn-n2,n∈N*.
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的首項(xiàng)a1=2,Sn為其前n項(xiàng)和,若5S1,S3,3S2成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2an,cn,記數(shù)列{cn}的前n項(xiàng)和Tn.若對(duì)?n∈N*,Tn≤k(n+4)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列{an}滿足:a1=1,an+1=3an+2n+1(n∈N*),求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列滿足, 且,其中.
(1) 求數(shù)列的通項(xiàng)公式;
(2) 設(shè)數(shù)列滿足,是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的的值;若不存在,請(qǐng)說(shuō)明理由。
(3) 令,記數(shù)列的前項(xiàng)和為,其中,證明:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{Sn}的前n項(xiàng)和為Tn,滿足Tn=2Snn2,n∈N*.
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

各項(xiàng)均為正數(shù)的等比數(shù)列中,
(Ⅰ)求數(shù)列通項(xiàng)公式;
(Ⅱ)若等差數(shù)列滿足,求數(shù)列的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列的首項(xiàng),公差.且分別是等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列對(duì)任意自然數(shù)均有 成立,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案