已知是由滿足下述條件的函數(shù)構(gòu)成的集合:對(duì)任意,
① 方程有實(shí)數(shù)根;② 函數(shù)的導(dǎo)數(shù)滿足
(Ⅰ)判斷函數(shù)是否是集合中的元素,并說(shuō)明理由;
(Ⅱ)集合中的元素具有下面的性質(zhì):若的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003322633315.png" style="vertical-align:middle;" />,則對(duì)于任意,都存在,使得等式成立.試用這一性質(zhì)證明:方程有且只有一個(gè)實(shí)數(shù)根;
(Ⅲ)對(duì)任意,且,求證:對(duì)于定義域中任意的,,,當(dāng),且時(shí),
(Ⅰ)函數(shù)是集合中的元素.
(Ⅱ)方程有且只有一個(gè)實(shí)數(shù)根.
(Ⅲ)對(duì)于任意符合條件的,總有成立.

試題分析:(Ⅰ)因?yàn)棰佼?dāng)時(shí),,
所以方程有實(shí)數(shù)根0;

所以,滿足條件
由①②,函數(shù)是集合中的元素.            5分
(Ⅱ)假設(shè)方程存在兩個(gè)實(shí)數(shù)根,,
,.
不妨設(shè),根據(jù)題意存在,
滿足.
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003323272511.png" style="vertical-align:middle;" />,,且,所以.
與已知矛盾.又有實(shí)數(shù)根,
所以方程有且只有一個(gè)實(shí)數(shù)根.                     10分
(Ⅲ)當(dāng)時(shí),結(jié)論顯然成立;                   11分
當(dāng),不妨設(shè).
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003323413621.png" style="vertical-align:middle;" />,且所以為增函數(shù),那么.
又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003323475611.png" style="vertical-align:middle;" />,所以函數(shù)為減函數(shù),
所以.
所以,即.
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003322804512.png" style="vertical-align:middle;" />,所以, (1)
又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003322804503.png" style="vertical-align:middle;" />,所以, (2)
(1)(2)得.
所以.
綜上,對(duì)于任意符合條件的,總有成立.  14分
點(diǎn)評(píng):綜合題,本題綜合性較強(qiáng),難度較大。證明方程只有一個(gè)實(shí)根,可通過(guò)構(gòu)造函數(shù),研究其單調(diào)性實(shí)現(xiàn),本解法運(yùn)用的是反證法。由自變量取值,且,確定函數(shù)值的關(guān)系,關(guān)鍵是如何實(shí)現(xiàn)兩者的有機(jī)轉(zhuǎn)換。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)y=的單調(diào)區(qū)間為___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)(某商品進(jìn)貨單價(jià)為元,若銷售價(jià)為元,可賣出個(gè),如果銷售單價(jià)每漲元,銷售量就減少個(gè),為了獲得最大利潤(rùn),則此商品的最佳售價(jià)應(yīng)為多少?)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)偶函數(shù)f(x)的定義域?yàn)镽,當(dāng)x時(shí)f(x)是增函數(shù),則f(-2),f(),f(-3)的大小關(guān)系是:(     )
A.f()>f(-3)>f(-2)B.f()>f(-2)>f(-3)
C.f()<f(-3)<f(-2)D.f()<f(-2)<f(-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)
設(shè)函數(shù)的導(dǎo)函數(shù)為,且
(Ⅰ)求函數(shù)的圖象在x=0處的切線方程;
(Ⅱ)求函數(shù)的極值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

對(duì),定義運(yùn)算“”、“”為:
給出下列各式
,②,
,  ④.
其中等式恒成立的是              .(將所有恒成立的等式的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分) 已知函數(shù)處有極值.
(Ⅰ)求實(shí)數(shù)值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)試問(wèn)是否存在實(shí)數(shù),使得不等式對(duì)任意 及
恒成立?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(滿分12分)
已知函數(shù).
(1)判斷并證明函數(shù)的單調(diào)性;
(2)若函數(shù)為奇函數(shù),求的值;
(3)在(2)的條件下,若對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分15分)定義在上的奇函數(shù),滿足 ,又當(dāng)時(shí),是減函數(shù),求的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案