函數(shù)y=的單調(diào)區(qū)間為___________.
(-∞,-1),(-1,+∞)

試題分析:根據(jù)反比例函數(shù)的單調(diào)性可知,對(duì)于函數(shù)y=的對(duì)稱中心為(-1,0),并
且在對(duì)稱中心的兩側(cè)單調(diào)性遞減,則可知為(-∞,-1),(-1,+∞)
點(diǎn)評(píng):解決的關(guān)鍵是利用反比例函數(shù)的單調(diào)性來(lái)分析證明,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)若上單調(diào)遞增,求的取值范圍;
(2)若定義在區(qū)間D上的函數(shù)對(duì)于區(qū)間上的任意兩個(gè)值總有以下不等式成立,則稱函數(shù)為區(qū)間上的 “凹函數(shù)”.試證當(dāng)時(shí),為“凹函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

理科已知函數(shù),當(dāng)時(shí),函數(shù)取得極大值.
(Ⅰ)求實(shí)數(shù)的值;(Ⅱ)已知結(jié)論:若函數(shù)在區(qū)間內(nèi)導(dǎo)數(shù)都存在,且,則存在,使得.試用這個(gè)結(jié)論證明:若,函數(shù),則對(duì)任意,都有;(Ⅲ)已知正數(shù)滿足求證:當(dāng)時(shí),對(duì)任意大于,且互不相等的實(shí)數(shù),都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若函數(shù)在區(qū)間(0,1]上是減函數(shù),則的取值范圍是_________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)f(x)是定義在R上的奇函數(shù),f(2)=0,當(dāng)x>0時(shí),有成立,則不等式的解集是(      )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)
(Ⅰ)若a=,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若當(dāng)≥0時(shí)f(x)≥0,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)的單調(diào)遞減區(qū)間是(   )
A.,+∞)B.(-∞,C.(0,D.[e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù),則滿足不等式的實(shí)數(shù)x的取值范圍是__________________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知是由滿足下述條件的函數(shù)構(gòu)成的集合:對(duì)任意
① 方程有實(shí)數(shù)根;② 函數(shù)的導(dǎo)數(shù)滿足
(Ⅰ)判斷函數(shù)是否是集合中的元素,并說(shuō)明理由;
(Ⅱ)集合中的元素具有下面的性質(zhì):若的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003322633315.png" style="vertical-align:middle;" />,則對(duì)于任意,都存在,使得等式成立.試用這一性質(zhì)證明:方程有且只有一個(gè)實(shí)數(shù)根;
(Ⅲ)對(duì)任意,且,求證:對(duì)于定義域中任意的,,,當(dāng),且時(shí),

查看答案和解析>>

同步練習(xí)冊(cè)答案