【題目】在平面直角坐標(biāo)系中,拋物線與軸交于點,將點向左平移4個單位長度,得到點,點在拋物線上.
(1)求點的坐標(biāo)(用含a的式子表示);
(2)求拋物線的對稱軸;
(3)已知點,.若拋物線與線段恰有一個公共點,結(jié)合函數(shù)圖象,求的取值范圍.
【答案】(1);(2);(3)
【解析】
(1)根據(jù)解析式得到點A的坐標(biāo),利用平移即可得到帶你B的坐標(biāo);
(2)根據(jù)點A、B的對稱性即可求出對稱軸;
(3)分兩種情況:a>0或a<0時,分別確定點P、Q的位置,根據(jù)拋物線與線段PQ恰有一個公共點求出答案.
(1)∵拋物線與軸交于點,
∴點A(0,-5a),
∵將點向左平移4個單位長度,得到點,
∴B(-4,-5a);
(2)對稱軸是x=;
(3)如圖:當(dāng)a<0時,
∵A(0,-5a), ,且-5a>-2a,
∴點P在拋物線下方,
∵,拋物線與線段恰有一個公共點,B(-4,-5a),
∴點Q在拋物線上方或是在拋物線上,即,
解得,
∴時拋物線與線段恰有一個公共點;
當(dāng)a>0時,∵A(0,-5a), ,且-5a<-2a<0,
∴點P在拋物線上方,在x軸下方,
∵,B(-4,-5a),
∴點Q在拋物線上方,
∴此時拋物線與線段沒有公共點;
綜上,時拋物線與線段恰有一個公共點.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,飛機在一定高度上沿水平直線飛行,先在點處測得正前方小島的俯角為,面向小島方向繼續(xù)飛行到達處,發(fā)現(xiàn)小島在其正后方,此時測得小島的俯角為.如果小島高度忽略不計,求飛機飛行的高度(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=mx+n與雙曲線y=相交于A(﹣1,2),B(2,b)兩點,與y軸相交于點C.
(1)求m,n的值;
(2)若點D與點C關(guān)于x軸對稱,求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C為⊙O上一點,OF⊥BC于點F,交⊙O于點E,AE與BC交于點H,點D為OE的延長線上一點,且∠ODB=∠AEC.
求證:(1)BD是⊙O的切線;
(2)若EH=2,AH=6,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點坐標(biāo)分別是A(1,1),B(4,1),C(3,3).
(1)將△ABC向下平移5個單位后得到△A1B1C1,請畫出△A1B1C1;
(2)將△ABC繞原點O逆時針旋轉(zhuǎn)90°后得到△A2B2C2,請畫出△A2B2C2;
(3)判斷以O,A1,B為頂點的三角形的形狀.(無須說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同學(xué)們參加綜合實踐活動時,看到木工師傅用“三弧法”在板材邊角處作直角,其作法是:如圖:
(1)作線段AB,分別以點A,B為圓心,AB長為半徑作弧,兩弧交于點C;
(2)以點C為圓心,仍以AB長為半徑作弧交AC的延長線于點D;
(3)連接BD,BC.
根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯誤的是( )
A.∠ABD=90°B.CA=CB=CDC.sinA=D.cosD=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學(xué)的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設(shè)每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,P是BC上一點,E是AB上一點,PD平分∠APC,PE⊥PD,連接DE交AP于F,在以下判斷中,不正確的是( 。
A.當(dāng)P為BC中點,△APD是等邊三角形
B.當(dāng)△ADE∽△BPE時,P為BC中點
C.當(dāng)AE=2BE時,AP⊥DE
D.當(dāng)△APD是等邊三角形時,BE+CD=DE
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com