6.計算
(1)$\sqrt{20}$×$\sqrt{\frac{5}{2}}$
(2)$\frac{\sqrt{12}-\sqrt{18}}{\sqrt{3}}$-2$\sqrt{\frac{2}{3}}$
(3)(1-tan60°)2+$\frac{1}{cos60°}$.

分析 (1)根據(jù)二次根式的乘法法則進行計算即可;
(2)先算除法,再合并即可;
(3)先把特殊角的三角函數(shù)值代入,再進行計算即可.

解答 解:(1)原式=$\sqrt{20×\frac{5}{2}}$
=$\sqrt{50}$
=5$\sqrt{2}$;

(2)原式=$\sqrt{\frac{12}{3}}$-$\sqrt{\frac{18}{3}}$-2×$\frac{\sqrt{6}}{3}$
=2-$\sqrt{6}$-$\frac{2}{3}$$\sqrt{6}$
=2-$\frac{5}{3}$$\sqrt{6}$;

(3)原式=(1-$\sqrt{3}$)2+$\frac{1}{\frac{1}{2}}$
=1-2$\sqrt{3}$+3+2
=6-2$\sqrt{3}$.

點評 本題考查了二次根式的混合運算,特殊角的三角函數(shù)值的應(yīng)用,能靈活運用知識點進行計算是解此題的關(guān)鍵,題目比較典型,難度不大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.今年3月5日,某中學(xué)組織全體學(xué)生參加了“走出校門,服務(wù)社會”的活動,活動分為打掃街道,去敬老院服務(wù)和到社區(qū)文藝演出三項.從七年級參加活動的同學(xué)中抽取了部分同學(xué),對打掃街道,去敬老院服務(wù)和到社區(qū)文藝演出的人數(shù)進行了統(tǒng)計,并繪制了如下直方圖和扇形統(tǒng)計圖.請解決以下問題:
(1)求抽取的部分同學(xué)的人數(shù);
(2)補全直方圖的空缺部分;
(3)若七年級有200名學(xué)生,估計該年級去敬老院的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在直角坐標系xOy中,邊長為2的等邊三角形AOC的頂點A、O都在x軸上,頂點C在第二象限內(nèi),△AOC經(jīng)過平移或軸對稱或旋轉(zhuǎn)都可以得到△OBD.
(1)△AOC沿x軸向右平移得到△OBD,則平移的距離是2個長度單位;△AOC與△BOD關(guān)于直線對稱,則對稱軸是y軸;△AOC繞原點O順時針方向旋轉(zhuǎn)得到△DOB,則旋轉(zhuǎn)角度可以是120度.
(2)連接AD,交OC于點E,求∠AEO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.計算:$\sqrt{12}$$÷\sqrt{3}$-$\sqrt{\frac{1}{2}}$×$\sqrt{24}$+$\sqrt{48}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.因式分解
(1)16(a-b)2-9(a+b)2
(2)3x2-12x+12.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

11.在Rt△ABC中,∠C=90°,AC=8,BC=6,將其如圖折疊使點A與點B重合,折痕為DE,連接BE,則tan∠CBE的值為(  )
A.$\frac{24}{7}$B.$\frac{\sqrt{7}}{3}$C.$\frac{7}{24}$D.$\frac{1}{3}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.如圖1,在四邊形ABCD中,∠CDB=2∠ABD,∠ABC=105°,∠A=∠C=45°.
(1)求∠ABD;
(2)求證:CD=AB;
(3)如圖2,過點C作CF⊥BD于點E,交AB于點F,若AB=3$\sqrt{3}$,則BF+BE=$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.解方程:
①-3(x-1)=6  
②$\frac{5-x}{3}$=$\frac{x-3}{2}$-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.如圖,馬路的兩邊CF,DE互相平行,線段CD為人行橫道,馬路兩側(cè)的A,B兩點分別表示車站和超市.CD與AB所在直線互相平行,且都與馬路的兩邊垂直.馬路寬20米,A,B相距62米,∠A=67°,∠B=37°.
(1)求CD與AB之間的距離;
(2)某人從車站A出發(fā),沿折線A→D→C→B去超市B.求他沿折線A→D→C→B到達超市比直接橫穿馬路多走多少米.
參考數(shù)據(jù):sin67°$≈\frac{12}{13}$,cos67°≈$\frac{12}{5}$,tan67°≈$\frac{12}{5}$,sin37°≈$\frac{3}{5}$,cos37°≈$\frac{4}{5}$,tan37°≈$\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊答案