【題目】如圖,D為Rt△ABC斜邊AB上一點(diǎn),以CD為直徑的圓分別交△ABC三邊于E、F、G三點(diǎn),連接FE,F(xiàn)G.
(1)求證:∠EFG=∠B;
(2)若AC=2BC=4,D為AE的中點(diǎn),求FG的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)4
【解析】試題分析:(1)連接EC,則∠AEC=90°,由同角的余角相等即可得出∠B=∠ECA,再根據(jù)圓周角定理即可得出∠ECA=∠EFG,由此即可證出∠EFG=∠B;
(2)由AC、BC的長(zhǎng)度利用勾股定理即可求出AB的長(zhǎng)度,結(jié)合面積法即可得出CE的長(zhǎng)度,由正切即可得出AE的長(zhǎng)度,再利用勾股定理可求出CD的長(zhǎng)度,連接FD、DG,由矩形的判定定理即可證出四邊形FCGD為矩形,利用矩形的性質(zhì)即可得出FG=CD,此題得解.
試題解析:(1)證明:連接EC,如圖1所示.
∵CD為直徑,
∴∠AEC=90°,
∴∠BCE+∠B=90°.
∵∠BCE+∠ECA=90°,
∴∠B=∠ECA.
又∵∠ECA=∠EFG,
∴∠EFG=∠B;
(2)解:在Rt△BCA中,AC=4,BC=2,
∴AB==10.
∵BCAC=ABCE,
∴CE=4.
∵tan∠A=,
∴AE=2CE=8.
在Rt△DCG中,CE=4,ED=AE=4,
∴CD==4.
連接FD、DG,如圖2所示.
∵CD是直徑,
∴∠CFD=∠CGD=90°,
又∵∠FCG=90°,
∴四邊形FCGD為矩形,
∴FG=CD=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校準(zhǔn)備購(gòu)買(mǎi)A、B兩種獎(jiǎng)品,獎(jiǎng)勵(lì)成績(jī)優(yōu)異的同學(xué).已知購(gòu)買(mǎi)1件A獎(jiǎng)品和1件B獎(jiǎng)品共需18元;購(gòu)買(mǎi)30件A獎(jiǎng)品和20件B獎(jiǎng)品共需480元.
(1)A、B兩種獎(jiǎng)品的單價(jià)分別是多少元?
(2)如果學(xué)校購(gòu)買(mǎi)兩種獎(jiǎng)品共100件,總費(fèi)用不超過(guò)850元,那么最多可以購(gòu)買(mǎi)A獎(jiǎng)品多少件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)三位數(shù),如果把它的個(gè)位數(shù)字與百位數(shù)字交換位置,那么所得的新數(shù)比原數(shù)小99,且各位數(shù)字之和為14,十位數(shù)字是個(gè)位數(shù)字與百位數(shù)字之和.求這個(gè)三位數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校七年級(jí)學(xué)生準(zhǔn)備去購(gòu)買(mǎi)《英漢詞典》一書(shū),此書(shū)標(biāo)價(jià)為20元,F(xiàn)A、B兩書(shū)店都有此書(shū)出售,A店按如下方法促銷(xiāo):若只購(gòu)一本,則按標(biāo)價(jià)銷(xiāo)售;若一次性購(gòu)買(mǎi)多于一本,但不多出20本時(shí),每多購(gòu)一本,每本銷(xiāo)售價(jià)在標(biāo)價(jià)的基礎(chǔ)上優(yōu)惠2%(例如買(mǎi)兩本,每本價(jià)優(yōu)惠2%;買(mǎi)三本價(jià)優(yōu)惠4%,以此類(lèi)推);若購(gòu)買(mǎi)多于20本時(shí),每本售價(jià)為12元,B店一律按標(biāo)價(jià)的7折銷(xiāo)售;
(1)試分別寫(xiě)出在兩書(shū)店購(gòu)此書(shū)的總價(jià)yA、yB與購(gòu)本書(shū)數(shù)x之間的函數(shù)關(guān)系式.
(2)若某班一次性購(gòu)買(mǎi)多于20本時(shí),那么去哪家書(shū)店購(gòu)買(mǎi)更合算?為什么?若要一次性購(gòu)買(mǎi)不多于20本時(shí),先寫(xiě)出y(y=yA-yB)與購(gòu)書(shū)本數(shù)x之間的函數(shù)關(guān)系式,并在圖中畫(huà)出其函數(shù)圖象,再利用函數(shù)圖象分析去哪家書(shū)店購(gòu)買(mǎi)更合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線(xiàn)y=m是平行于X軸的直線(xiàn),將拋物線(xiàn)y=-x2-4x在直線(xiàn)y=m上側(cè)的部分沿直線(xiàn) y=m翻折,翻折后的部分與沒(méi)有翻折的部分組成新的函數(shù)圖像,若新的函數(shù)圖像剛好與 直線(xiàn)y=-x有3個(gè)交點(diǎn),則滿(mǎn)足條件的m 的值為_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)正整數(shù)能表示成兩個(gè)連續(xù)偶數(shù)的平方差,那么這個(gè)正整數(shù)為“神秘?cái)?shù)”.
如:
因此,4,12,20這三個(gè)數(shù)都是神秘?cái)?shù).
(1)28和2012這兩個(gè)數(shù)是不是神秘?cái)?shù)?為什么?
(2)設(shè)兩個(gè)連續(xù)偶數(shù)為和(其中為非負(fù)整數(shù)),由這兩個(gè)連續(xù)偶數(shù)構(gòu)造的神秘?cái)?shù)是4的倍數(shù),請(qǐng)說(shuō)明理由.
(3)兩個(gè)連續(xù)奇數(shù)的平方差(取正數(shù))是不是神秘?cái)?shù)?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖是一個(gè)橫斷面為拋物線(xiàn)形狀的拱橋,當(dāng)水面寬4 m時(shí),拱頂(拱橋洞的最高點(diǎn))離水面2 m,當(dāng)水面下降1 m時(shí),水面的寬度為_____m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù) y=kx+b(k≠0)的圖象經(jīng)過(guò)點(diǎn)(-1,-5),(2,1)兩點(diǎn).
(1)求 k 和 b 的值;
(2)一次函數(shù) y=kx+b 圖象與坐標(biāo)軸所圍成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,△ABC的頂點(diǎn)均在格點(diǎn)上,直線(xiàn)a為對(duì)稱(chēng)軸,A和C都在對(duì)稱(chēng)軸上.
(1)△ABC以直線(xiàn)a為對(duì)稱(chēng)軸作△AB1C;
(2)若∠BAC=30°,則∠BAB1=______°;
(3)求△ABB1的面積等于______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com