【題目】已知一次函數(shù) y=kx+b(k≠0)的圖象經(jīng)過點(diǎn)(-1,-5),(2,1)兩點(diǎn).
(1)求 k 和 b 的值;
(2)一次函數(shù) y=kx+b 圖象與坐標(biāo)軸所圍成的三角形的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中建立直角坐標(biāo)系,△AOB的頂點(diǎn)均在格點(diǎn)上,點(diǎn)O為原點(diǎn),點(diǎn)A、B的的坐標(biāo)分別為A(3,2)、B(1,3).
⑴.請畫出將△AOB向左平移3個單位后得到的圖形△A1OB1,點(diǎn)B1的坐標(biāo)為 ;
⑵.請畫出將△AOB關(guān)于原點(diǎn)O成對稱的圖形△A2OB2,點(diǎn)A2的坐標(biāo)為 ;
⑶.在x軸上找一點(diǎn)P,使PA+PB的值最小,則P點(diǎn)的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D為Rt△ABC斜邊AB上一點(diǎn),以CD為直徑的圓分別交△ABC三邊于E、F、G三點(diǎn),連接FE,F(xiàn)G.
(1)求證:∠EFG=∠B;
(2)若AC=2BC=4,D為AE的中點(diǎn),求FG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AD=2,AB=3,過點(diǎn)A,C作相距為2的平行線段AE,CF,分別交CD,AB于點(diǎn)E,F(xiàn),則DE的長是( 。
A. B. C. 1 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P 為平行四邊形 ABCD 內(nèi)一點(diǎn),PB=PC,∠BPC=90°,∠PAB=75°,若 AB=11,PD=14,則 PA 的長為_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:菱形 ABCD,點(diǎn) E 在線段 BC 上,連接 DE,點(diǎn) F 在線段 AB 上,連接 CF、DF, CF 與 DE 交于點(diǎn) G,將菱形 ABCD 沿 DF 翻折,點(diǎn) A 恰好落在點(diǎn) G 上.
(1)求證:CD=CF;
(2)設(shè)∠CED= x,∠DCF= y,求 y 與 x 的函數(shù)關(guān)系式;(不要求寫出自變量的取值范圍)
(3)在(2)的條件下,當(dāng) x=45°時(shí),以 CD 為底邊作等腰△CDK,頂角頂點(diǎn) K 在菱形 ABCD的內(nèi)部,連接 GK,若 GK∥CD,CD=4 時(shí),求線段 KG 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,BC邊的長為x,BC邊上的高為y,△ABC的面積為3.
(1)寫出y關(guān)于x的函數(shù)關(guān)系式 ;x的取值范圍是 .
(2)列表,得
x | … | 1 | 2 | 3 | 4 | … |
y | … |
|
|
|
| … |
在給出的坐標(biāo)系中描點(diǎn)并連線;
(3)如果A(x1,y1),B(x2,y2)是圖象上的兩個點(diǎn),且x1>x2>0,試判斷y1,y2的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(-2,n)在拋物線y=x2+bx+c上.
(1)若b=1,c=3,求n的值;
(2)若此拋物線經(jīng)過點(diǎn)B(4,n),且二次函數(shù)y=x2+bx+c的最小值是-4,請畫出點(diǎn)P(x-1,x2+bx+c)的縱坐標(biāo)隨橫坐標(biāo)變化的圖象,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形和都是正方形,點(diǎn)在邊上,點(diǎn)在對角線上,若,則的面積是( )
A.6B.8C.9D.12
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com