重慶七中高2009級(jí)高三下第一次月考題
理科數(shù)學(xué)
命題人:楊春樹
試題說明:本試卷分選擇題和非選擇題兩部分。滿分150分,考試用時(shí)120分鐘。
注意事項(xiàng):
1、答題前,考生務(wù)必用黑色碳素筆將自己的姓名、準(zhǔn)考證號(hào)、考場號(hào)、座位號(hào)在答題卷上填寫清楚。 2、每題答案必須填寫在答題卷相應(yīng)的位置,答在試卷上的答案無效。
參考公式:
如果事件互斥,那么
如果事件相互獨(dú)立,那么
如果事件在一次試驗(yàn)中發(fā)生的概率是,那么
次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生次的概率
一、選擇題(本題共10小題,每小題只有一個(gè)選項(xiàng),每題5分,共50分)
1、的值為( )
2、已知都是實(shí)數(shù),則“”是“”的( )
A、 必要不充分條件 B、充分不必要條件
C、充分必要條件 D、既不充分也不必要條件
3、設(shè)、是不同的直線,、、是不同的平面,有以下四個(gè)命題:
① 若 則 ②若,,則
③ 若,則 ④若,則
其中真命題的序號(hào)是( )
A、①④ B、 ②③ C、②④ D、①③
4、某高校外語系有8名奧運(yùn)會(huì)志愿者,其中有5名男生,3名女生,現(xiàn)從中選3人參加某項(xiàng)“好運(yùn)北京”測試賽的翻譯工作,若要求這3人中既有男生,又有女生,則不同的選法共有( )種
5、若函數(shù)的圖象按向量平移后,它的一條對(duì)稱軸是=,則的一個(gè)可能值是( )
A、 B、 C、 D、
6、若圓的圓心到直線的距離為,則( )
A、或 B、 C、或 D、或
7、已知變量滿足約束條件則的取值范圍是( )
A、 B、
C、 D、
8、兩位同學(xué)去某大學(xué)參加自主招生考試,根據(jù)右圖學(xué)校負(fù)責(zé)人與他們兩人的對(duì)話,可推斷出參加考試的人數(shù)為( )
9、已知平面兩兩垂直,點(diǎn),點(diǎn)到的距離都是,點(diǎn)是上的動(dòng)點(diǎn),且點(diǎn)到的距離是到點(diǎn)距離的倍,則點(diǎn)的軌跡上的點(diǎn)到的距離的最小值是( )
10、函數(shù)的值域是( )
二、填空題(本題共5小題,每題5分,共25分)
11、函數(shù)的定義域是 ;
12、已知是公比為的等比數(shù)列,且成等差數(shù)列,則__________;
13、三棱錐的四個(gè)頂點(diǎn)點(diǎn)在同一球面上,若底面,底面是直角三角形,,則此球的表面積為__________;
14、已知,點(diǎn)是圓上的動(dòng)點(diǎn),點(diǎn)是圓上的動(dòng)點(diǎn),則的最大值是________;
15、設(shè)為整數(shù),若和被除得的余數(shù)相同,則稱和對(duì)模同余,記為;已知,,則滿足條件的正整數(shù)中,最小的兩位數(shù)是 ;
三、解答題(共6小題, 16-18題每題13分,19-21題12分,共75分)
16、已知函數(shù).
(Ⅰ)、求的最大值,并求出此時(shí)的值;
(Ⅱ)、寫出的單調(diào)遞增區(qū)間;
17、重慶市在2009年初舉行了一次高中數(shù)學(xué)新課程骨干培訓(xùn),共邀請了15名使用兩種不同版本教材的教師,數(shù)據(jù)如下表所示:
版本
人教A版
人教B版
性別
男教師
女教師
男教師
女教師
人數(shù)
6
3
4
2
(Ⅰ)、從這15名教師中隨機(jī)選出2名,則2人恰好是教不同版本的男教師的概率是多少?
(Ⅱ)、培訓(xùn)活動(dòng)隨機(jī)選出2名代表發(fā)言,設(shè)發(fā)言代表中使用人教版的女教師人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望;
18、如圖,正三棱柱中,是的中點(diǎn),
(Ⅰ)、求證:∥平面;
(Ⅱ)、求二面角的大;
19、已知;
(Ⅰ)若,求方程的解;
(Ⅱ)若關(guān)于的方程在上有兩個(gè)解,求的取值范圍;
20、已知,點(diǎn)滿足,記點(diǎn)的軌跡為;
(Ⅰ)、求軌跡的方程;
(Ⅱ)、若直線過點(diǎn)且與軌跡交于兩點(diǎn);
①、設(shè)點(diǎn),問:是否存在實(shí)數(shù),使得直線繞點(diǎn)無論怎樣轉(zhuǎn)動(dòng),都有成立?若存在,求出實(shí)數(shù)的值;若不存在,請說明理由;
②、過作直線的垂線,垂足分別為,記,求的取值范圍;
21、已知數(shù)列的前項(xiàng)和滿足:(為常數(shù),且);
(Ⅰ)、求的通項(xiàng)公式;
(Ⅱ)、設(shè),若數(shù)列為等比數(shù)列,求的值;
(Ⅲ)、在滿足條件(Ⅱ)的情形下,設(shè),數(shù)列的前項(xiàng)和為;
求證:;
1、A 2,、B 3、 D 4,、B 5、 D 6、C 7、A 8、B 9、A 10、D
11、(,1] 12、-或1 13、6p 14、2 15、11
16解:解:(Ⅰ)
當(dāng),即時(shí),取得最大值.
(Ⅱ)當(dāng),即時(shí),
所以函數(shù)的單調(diào)遞增區(qū)間是
17、解:(Ⅰ)從15名教師中隨機(jī)選出2名共種選法, …………………………2分
所以這2人恰好是教不同版本的男教師的概率是. …………………5分
(Ⅱ)由題意得
; ;.
故的分布列為
0
1
2
所以,數(shù)學(xué)期望.
18、解法一:(Ⅰ)證明:連接
∥。 ……………………3分
∥平面 …………………………5分
(Ⅱ)解:在平面
―― ……………………8分
設(shè)。
在
所以,二面角――的大小為。 ………………12分
19、(I)解:當(dāng)
①當(dāng), 方程化為
②當(dāng), 方程化為1+2x = 0, 解得,
由①②得,
(II)解:不妨設(shè),
因?yàn)?sub>
所以是單調(diào)遞函數(shù), 故上至多一個(gè)解,
20、解:(Ⅰ)由知,點(diǎn)的軌跡是以、為焦點(diǎn)的雙曲線右支,由,∴,故軌跡E的方程為…(3分)
(Ⅱ)當(dāng)直線l的斜率存在時(shí),設(shè)直線l方程為,與雙曲線方程聯(lián)立消得,設(shè)、,
|