題目列表(包括答案和解析)
已知,點滿足,記點的軌跡為.
(Ⅰ)求軌跡的方程;(Ⅱ)若直線過點且與軌跡交于、兩點. (i)設點,問:是否存在實數,使得直線繞點無論怎樣轉動,都有成立?若存在,求出實數的值;若不存在,請說明理由.(ii)過、作直線的垂線、,垂足分別為、,記
,求的取值范圍.
設點是曲線上的動點,點到點(0,1)的距離和它到焦點的距離之和的最小值為.
(1)求曲線C的方程;
(2)若點的橫坐標為1,過作斜率為的直線交于點,交軸于點,過點且與垂直的直線與交于另一點,問是否存在實數,使得直線與曲線相切?若存在,求出的值;若不存在,請說明理由.
設點是曲線上的動點,點到點(0,1)的距離和它到焦點的距離之和的最小值為.
(1)求曲線C的方程;
(2)若點的橫坐標為1,過作斜率為的直線交于點,交軸于點,過點且與垂直的直線與交于另一點,問是否存在實數,使得直線與曲線相切?若存在,求出的值;若不存在,請說明理由.
x+1 | x-1 |
已知函數在處取得極小值.
(1)若函數的極小值是,求;
(2)若函數的極小值不小于,問:是否存在實數,使得函數在上單調遞減?若存在,求出的范圍;若不存在,說明理由.
1、A 2,、B 3、 D 4,、B 5、 D 6、C 7、A 8、B 9、A 10、D
11、(,1] 12、-或1 13、6p 14、2 15、11
16解:解:(Ⅰ)
當,即時,取得最大值.
(Ⅱ)當,即時,
所以函數的單調遞增區(qū)間是
17、解:(Ⅰ)從15名教師中隨機選出2名共種選法, …………………………2分
所以這2人恰好是教不同版本的男教師的概率是. …………………5分
(Ⅱ)由題意得
; ;.
故的分布列為
0
1
2
所以,數學期望.
18、解法一:(Ⅰ)證明:連接
∥。 ……………………3分
∥平面 …………………………5分
(Ⅱ)解:在平面
―― ……………………8分
設。
在
所以,二面角――的大小為。 ………………12分
19、(I)解:當
①當, 方程化為
②當, 方程化為1+2x = 0, 解得,
由①②得,
(II)解:不妨設,
因為
所以是單調遞函數, 故上至多一個解,
20、解:(Ⅰ)由知,點的軌跡是以、為焦點的雙曲線右支,由,∴,故軌跡E的方程為…(3分)
(Ⅱ)當直線l的斜率存在時,設直線l方程為,與雙曲線方程聯立消得,設、,
|