設為整數(shù).若和被除得的余數(shù)相同.則稱和對模同余.記為,已知..則滿足條件的正整數(shù)中.最小的兩位數(shù)是 , 查看更多

 

題目列表(包括答案和解析)

為整數(shù)(),若除得的余數(shù)相同,則稱對模同余,記為)。已知,則的值可以是(    )

A.2015             B.2011             C.2008             D.2006

 

查看答案和解析>>

為整數(shù)(),若除得的余數(shù)相同,則稱對模同余,記作,已知,且,則的值可為                                                               (   )A.2012             B.2011             C.2010            D.2009

 

查看答案和解析>>

為整數(shù),若除得的余數(shù)相同,則稱同余,記為 已知,則的值可以是

    A. 2010            B. 2011            C. 2008            D. 2009

 

查看答案和解析>>

為正整數(shù),若除得的余數(shù)相同,則稱對模同余,記為。已知,則的值可以是                                                                   (    )

 

 

查看答案和解析>>

,,為整數(shù)(),若除得的余數(shù)相同,則稱對模同余,記作,已知,且,則的值可為(    ).

A.2011             B.2012             C.2009             D.2010

 

查看答案和解析>>

1、A  2,、B  3、 D  4,、B  5、 D  6、C   7、A  8、B  9、A  10、D

11、(,1]   12、-或1      13、6p     14、2    15、11

16解:解:(Ⅰ)

           

,即時,取得最大值.

(Ⅱ)當,即時,

所以函數(shù)的單調(diào)遞增區(qū)間是

17、解:(Ⅰ)從15名教師中隨機選出2名共種選法,   …………………………2分

所以這2人恰好是教不同版本的男教師的概率是.  …………………5分

(Ⅱ)由題意得

;  ;

的分布列為

0

1

2

 

 

所以,數(shù)學期望

18、解法一:(Ⅰ)證明:連接

文本框:        

   

                                      

     。  ……………………3分

∥平面 …………………………5分

(Ⅱ)解:在平面

……………………8分

。

所以,二面角的大小為。 ………………12分

19、(I)解:當

  ①當, 方程化為

  ②當, 方程化為1+2x = 0, 解得

  由①②得,

 (II)解:不妨設

 因為

  所以是單調(diào)遞函數(shù),    故上至多一個解,

 

20、解:(Ⅰ)由知,點的軌跡是以、為焦點的雙曲線右支,由,∴,故軌跡E的方程為…(3分)

(Ⅱ)當直線l的斜率存在時,設直線l方程為,與雙曲線方程聯(lián)立消,設,

(i)∵

……………………(7分)

    假設存在實數(shù),使得,

    故得對任意的恒成立,

    ∴,解得 ∴當時,.

    當直線l的斜率不存在時,由知結(jié)論也成立,

    綜上,存在,使得.

   (ii)∵,∴直線是雙曲線的右準線,

    由雙曲線定義得:,,

    方法一:∴

    ∵,∴,∴

    注意到直線的斜率不存在時,,綜上,

    方法二:設直線的傾斜角為,由于直線

與雙曲線右支有二個交點,∴,過

,垂足為,則,

        由,得故:

    21 解:(Ⅰ)

    時,

    ,即是等比數(shù)列. ∴; 

    (Ⅱ)由(Ⅰ)知,,若為等比數(shù)列,

     則有

    ,解得,

    再將代入得成立, 所以.  

    (III)證明:由(Ⅱ)知,所以

    ,   由

    所以,   

    從而

    .                       

     

     


    同步練習冊答案
    <p id="4asl2"><mark id="4asl2"></mark></p>