已知拋物線,直線與E交于A、B兩點(diǎn),且,其中O為原點(diǎn).
(1)求拋物線E的方程;
(2)點(diǎn)C坐標(biāo)為,記直線CA、CB的斜率分別為,證明:為定值.

(1);(2)證明過程詳見解析.

解析試題分析:本題考查拋物線的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程、向量的數(shù)量積等基礎(chǔ)知識(shí),考查用代數(shù)方法研究圓錐曲線的性質(zhì),考查運(yùn)算求解能力、綜合分析和解決問題的能力.第一問,將直線與拋物線方程聯(lián)立,消去參數(shù),得到關(guān)于的方程,得到兩根之和兩根之積,設(shè)出點(diǎn)的坐標(biāo),代入到中,化簡表達(dá)式,再將上述兩根之和兩根之積代入得出的值,從而得到拋物線的標(biāo)準(zhǔn)方程;第二問,先利用點(diǎn)的坐標(biāo)得出直線的斜率,再根據(jù)拋物線方程轉(zhuǎn)化參數(shù),得到的關(guān)系式,代入到所求證的式子中,將上一問中的兩根之和兩根之積代入,化簡表達(dá)式得出常數(shù)即可.
試題解析:(Ⅰ)將代入,得.    2分
其中
設(shè),,則
,.          4分

由已知,,
所以拋物線的方程.          6分
(Ⅱ)由(Ⅰ)知,,
,同理,     10分
所以.    12分
考點(diǎn):1.拋物線的標(biāo)準(zhǔn)方程;2.韋達(dá)定理;3.向量的數(shù)量積;4.直線的斜率公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)分別是橢圓的左、右焦點(diǎn), 點(diǎn)在橢圓上上.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線、均與橢圓相切,試探究在軸上是否存在定點(diǎn),點(diǎn)的距離之積恒為1?若存在,請(qǐng)求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為、,為原點(diǎn).
(1)如圖1,點(diǎn)為橢圓上的一點(diǎn),的中點(diǎn),且,求點(diǎn)軸的距離;

(2)如圖2,直線與橢圓相交于、兩點(diǎn),若在橢圓上存在點(diǎn),使四邊形為平行四邊形,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓:的離心率為,過橢圓右焦點(diǎn)的直線與橢圓交于點(diǎn)(點(diǎn)在第一象限).
(Ⅰ)求橢圓的方程;
(Ⅱ)已知為橢圓的左頂點(diǎn),平行于的直線與橢圓相交于兩點(diǎn).判斷直線是否關(guān)于直線對(duì)稱,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:的兩個(gè)焦點(diǎn)是F1(c,0),F(xiàn)2(c,0)(c>0)。
(I)若直線與橢圓C有公共點(diǎn),求的取值范圍;
(II)設(shè)E是(I)中直線與橢圓的一個(gè)公共點(diǎn),求|EF1|+|EF2|取得最小值時(shí),橢圓的方程;
(III)已知斜率為k(k≠0)的直線l與(II)中橢圓交于不同的兩點(diǎn)A,B,點(diǎn)Q滿足   ,其中N為橢圓的下頂點(diǎn),求直線l在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

給定橢圓,稱圓心在坐標(biāo)原點(diǎn)O,半徑為的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個(gè)焦點(diǎn)分別是.
(1)若橢圓C上一動(dòng)點(diǎn)滿足,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過點(diǎn)作直線l與橢圓C只有一個(gè)交點(diǎn),且截橢圓C的“伴隨圓”所得弦長為,求P點(diǎn)的坐標(biāo);
(3)已知,是否存在a,b,使橢圓C的“伴隨圓”上的點(diǎn)到過兩點(diǎn)的直線的最短距離.若存在,求出a,b的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(13分) 已知橢圓C的中心在原點(diǎn),離心率等于,它的一個(gè)短軸端點(diǎn)點(diǎn)恰好是拋物線 的焦點(diǎn)。

(1)求橢圓C的方程;
(2)已知P(2,3)、Q(2,-3)是橢圓上的兩點(diǎn),A,B是橢圓上位于直線PQ兩側(cè)的動(dòng)點(diǎn),
①若直線AB的斜率為,求四邊形APBQ面積的最大值;
②當(dāng)A、B運(yùn)動(dòng)時(shí),滿足,試問直線AB的斜率是否為定值,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)直線與雙曲線交于A、B,且以AB為直徑的圓過原點(diǎn),求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線上有一點(diǎn),到焦點(diǎn)的距離為.
(Ⅰ)求的值.
(Ⅱ)如圖,設(shè)直線與拋物線交于兩點(diǎn),且,過弦的中點(diǎn)作垂直于軸的直線與拋物線交于點(diǎn),連接.試判斷的面積是否為定值?若是,求出定值;否則,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案