已知點分別是橢圓的左、右焦點, 點在橢圓上上.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設直線若、均與橢圓相切,試探究在軸上是否存在定點,點到的距離之積恒為1?若存在,請求出點坐標;若不存在,請說明理由.
(1);(2)滿足題意的定點存在,其坐標為或
解析試題分析:本題主要考查橢圓的定義和標準方程以及直線與橢圓的位置關系等數學知識,考查分析問題解決問題的能力和計算能力.第一問,法一:利用焦點坐標求出,由于點在橢圓上,得到方程,又因為三個參量的關系得,聯(lián)立,解出,從而得到橢圓的方程;法二:利用橢圓的定義,,利用兩點間的距離公式計算得出的值,從而得到橢圓的方程;第二問,直線與橢圓聯(lián)立,由于它們相切,所以方程只有一個根,所以,同理直線與橢圓聯(lián)立得到表達式,假設存在點,利用點到直線的距離,列出表達式,將代入整理,使得到的表達式,解出的值,從而得到點坐標.
試題解析:(1)法一:由,得, 1分
2分
∴橢圓的方程為 4分
法二:由,得, 1分
3分
∴
∴橢圓的方程為 4分
(2)把的方程代入橢圓方程得 5分
∵直線與橢圓相切,∴,化簡得
同理把的方程代入橢圓方程也得: 7分
設在軸上存在點,點到直線的距離之積為1,則
,即, 9分
把代入并去絕對值整理, 或者 10分
前式顯然不恒成立;而要使得后式對任意的恒成立 則,解得;
綜上所述,滿足題意的定點存在,其坐標為或 12分
考點:1.橢圓的標準方程;2.橢圓的定義;3.兩點間的距離公式;4.點到直線的距離公式.
科目:高中數學 來源: 題型:解答題
已知橢圓C的中心在原點,焦點在軸上,以兩個焦點和短軸的兩個端點為頂點的四邊形F1B1 F2B2是一個面積為8的正方形.
(1)求橢圓C的方程;
(2)已知點P的坐標為P(-4,0), 過P點的直線L與橢圓C相交于M、N兩點,當線段MN的中點G落在正方形內(包含邊界)時,求直線L的斜率的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線的頂點在坐標原點,對稱軸為軸,焦點為,拋物線上一點的橫坐標為2,且.
(1)求拋物線的方程;
(2)過點作直線交拋物線于,兩點,求證: .
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的左、右焦點分別為,離心率為,P是橢圓上一點,且面積的最大值等于2.
(1)求橢圓的方程;
(2)直線y=2上是否存在點Q,使得從該點向橢圓所引的兩條切線相互垂直?若存在,求點Q的坐標;若不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:的左、右焦點和短軸的一個端點構成邊長為4的正三角形.
(1)求橢圓C的方程;
(2)過右焦點的直線與橢圓C相交于A、B兩點,若,求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知是拋物線上的兩個點,點的坐標為,直線的斜率為k, 為坐標原點.
(Ⅰ)若拋物線的焦點在直線的下方,求k的取值范圍;
(Ⅱ)設C為W上一點,且,過兩點分別作W的切線,記兩切線的交點為,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com