已知橢圓的左、右焦點(diǎn)分別為、,為原點(diǎn).
(1)如圖1,點(diǎn)為橢圓上的一點(diǎn),是的中點(diǎn),且,求點(diǎn)到軸的距離;
(2)如圖2,直線與橢圓相交于、兩點(diǎn),若在橢圓上存在點(diǎn),使四邊形為平行四邊形,求的取值范圍.
(1);(2).
解析試題分析:(1)先設(shè)點(diǎn)的坐標(biāo),并利用點(diǎn)的坐標(biāo)來表示點(diǎn)的坐標(biāo),利用以及點(diǎn)在橢圓上列方程組求解點(diǎn)的坐標(biāo),從而求出點(diǎn)到軸的距離;(2)先設(shè)點(diǎn)、,利用為平行四邊形,得到,將直線方程與橢圓方程聯(lián)立,結(jié)合韋達(dá)定理與點(diǎn)在橢圓上這一條件,列相應(yīng)等式求出實(shí)數(shù)的取值范圍.
試題解析:(1)由已知得、,
設(shè),則的中點(diǎn)為,
,,即,
整理得,①,又有,②
由①②聯(lián)立解得或(舍)
點(diǎn)到軸的距離為;
(2)設(shè),,,
四邊形是平行四邊形
線段的中點(diǎn)即為線段的中點(diǎn),即,,
點(diǎn)在橢圓上,,
即,
化簡得,
由得,
由得,④
且,代入③式得,
整理得代入④式得,又,或,
的取值范圍是.
考點(diǎn):1.直線與橢圓的位置關(guān)系;2.韋達(dá)定理
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),對(duì)稱軸為軸,焦點(diǎn)為,拋物線上一點(diǎn)的橫坐標(biāo)為2,且.
(1)求拋物線的方程;
(2)過點(diǎn)作直線交拋物線于,兩點(diǎn),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的焦點(diǎn)為,過點(diǎn)的直線交拋物線于點(diǎn),.
(Ⅰ)若(點(diǎn)在第一象限),求直線的方程;
(Ⅱ)求證:為定值(點(diǎn)為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是拋物線上的兩個(gè)點(diǎn),點(diǎn)的坐標(biāo)為,直線的斜率為k, 為坐標(biāo)原點(diǎn).
(Ⅰ)若拋物線的焦點(diǎn)在直線的下方,求k的取值范圍;
(Ⅱ)設(shè)C為W上一點(diǎn),且,過兩點(diǎn)分別作W的切線,記兩切線的交點(diǎn)為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,已知拋物線,設(shè)點(diǎn),,為拋物線上的動(dòng)點(diǎn)(異于頂點(diǎn)),連結(jié)并延長交拋物線于點(diǎn),連結(jié)、并分別延長交拋物線于點(diǎn)、,連結(jié),設(shè)、的斜率存在且分別為、.
(1)若,,,求;
(2)是否存在與無關(guān)的常數(shù),是的恒成立,若存在,請(qǐng)將用、表示出來;若不存在請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓經(jīng)過點(diǎn),離心率為.
(1)求橢圓C的方程:
(2)過點(diǎn)Q(1,0)的直線l與橢圓C相交于A、B兩點(diǎn),點(diǎn)P(4,3),記直線PA,PB的斜率分別為k1,k2,當(dāng)k1·k2最大時(shí),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是橢圓E:的兩個(gè)焦點(diǎn),拋物線的焦點(diǎn)為橢圓E的一個(gè)焦點(diǎn),直線y=上到焦點(diǎn)F1,F(xiàn)2距離之和最小的點(diǎn)P恰好在橢圓E上,
(Ⅰ)求橢圓E的方程;
(Ⅱ)如圖,過點(diǎn)的動(dòng)直線交橢圓于A、B兩點(diǎn),是否存在定點(diǎn)M,使以AB為直徑的圓恒過這個(gè)點(diǎn)?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線,直線與E交于A、B兩點(diǎn),且,其中O為原點(diǎn).
(1)求拋物線E的方程;
(2)點(diǎn)C坐標(biāo)為,記直線CA、CB的斜率分別為,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓的長軸為AB,過點(diǎn)B的直線與
軸垂直,橢圓的離心率,F為橢圓的左焦點(diǎn),且
(1)求此橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P是此橢圓上異于A,B的任意一點(diǎn), 軸,H為垂足,延長HP到點(diǎn)Q,使得HP=PQ,連接AQ并延長交直線于點(diǎn),為的中點(diǎn),判定直線與以為直徑的圓O位置關(guān)系。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com