【題目】在平面直角坐標(biāo)系中,已知、分別為橢圓的左、右焦點(diǎn),直線過點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于直線于點(diǎn),線段的中垂線交于點(diǎn).記點(diǎn)的軌跡為曲線.
(1)求曲線的方程,并說(shuō)明是什么曲線;
(2)若直線與曲線交于兩點(diǎn)、,則在圓上是否存在兩點(diǎn)、,使得,?若存在,請(qǐng)求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);是以為焦點(diǎn),為準(zhǔn)線的拋物線(2)存在;
【解析】
(1)根據(jù)題意可得,再根據(jù)拋物線的定義即可求出曲線的方程.
(2)將直線與曲線:聯(lián)立,由直線與曲線交于點(diǎn),,,利用韋達(dá)定理可得,從而求出的中垂線方程,由,,可得的中垂線與圓交于兩點(diǎn)、,利用點(diǎn)到直線的距離公式使圓心到直線的距離小于半徑即可求解.
(1)由題意,得,則動(dòng)點(diǎn)的軌跡是以為焦點(diǎn),
為準(zhǔn)線的拋物線,所以點(diǎn)的軌跡的方程為.
(2)由得.
由直線與曲線交于點(diǎn),,
得,解得.
由韋達(dá)定理,得.
設(shè)的中點(diǎn)為,
則,,
即,
所以的中垂線方程為,即,
由,,得的中垂線與圓交于兩點(diǎn)、,
所以,解得.
由①和②,得.
綜上,當(dāng)時(shí),圓上存在兩點(diǎn)、,使得,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)當(dāng)時(shí),是什么曲線?
(2)當(dāng)時(shí),求與的公共點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,,分別為的左、右頂點(diǎn).
(1)求的方程;
(2)若點(diǎn)在上,點(diǎn)在直線上,且,,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生平均每天體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)
平均每天鍛煉的時(shí)間/分鐘 | ||||||
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學(xué)生日均體育鍛煉時(shí)間在的學(xué)生評(píng)價(jià)為“鍛煉達(dá)標(biāo)”.
(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表;
鍛煉不達(dá)標(biāo) | 鍛煉達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 20 | 110 | |
合計(jì) |
并通過計(jì)算判斷,是否能在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān)?
(2)在“鍛煉達(dá)標(biāo)”的學(xué)生中,按男女用分層抽樣方法抽出10人,進(jìn)行體育鍛煉體會(huì)交流,
(i)求這10人中,男生、女生各有多少人?
(ii)從參加體會(huì)交流的10人中,隨機(jī)選出2人作重點(diǎn)發(fā)言,記這2人中女生的人數(shù)為,求的分布列和數(shù)學(xué)期望.
參考公式:,其中.
臨界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,且長(zhǎng)度單位相同.
(1)求圓的極坐標(biāo)方程;
(2)若直線:(為參數(shù))被圓截得的弦長(zhǎng)為2,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知斜率為1的直線交拋物線:()于,兩點(diǎn),且弦中點(diǎn)的縱坐標(biāo)為2.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)記點(diǎn),過點(diǎn)作兩條直線,分別交拋物線于,(,不同于點(diǎn))兩點(diǎn),且的平分線與軸垂直,求證:直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的連續(xù)函數(shù)f(x)滿足f(x)=f(2﹣x),導(dǎo)函數(shù)為f′(x).當(dāng)x>1時(shí),2f(x)+(x﹣1)f′(x)>0,且f(﹣1),則不等式f(x)<6(x﹣1)﹣2的解集為( )
A.(﹣1,1)∪(1,4)B.(﹣1,1)∪(1,3)
C.(,1)∪(1,2)D.(,1)∪(1,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知無(wú)窮數(shù)列的前項(xiàng)中的最大項(xiàng)為,最小項(xiàng)為,設(shè).
(1)若,求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前項(xiàng)和;
(3)若數(shù)列是等差數(shù)列,求證:數(shù)列是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正四面體的棱長(zhǎng)為2,是棱上一動(dòng)點(diǎn),若于,則線段的長(zhǎng)度的最小值是______
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com