【題目】已知斜率為1的直線交拋物線)于,兩點(diǎn),且弦中點(diǎn)的縱坐標(biāo)為2.

1)求拋物線的標(biāo)準(zhǔn)方程;

2)記點(diǎn),過點(diǎn)作兩條直線,分別交拋物線,不同于點(diǎn))兩點(diǎn),且的平分線與軸垂直,求證:直線的斜率為定值.

【答案】(1) ;(2)見解析.

【解析】

(1)涉及中點(diǎn)弦,用點(diǎn)差法處理即可求得,進(jìn)而求得拋物線方程;

(2)的平分線與軸垂直,可知直線,的斜率存在,且斜率互為相反數(shù),且不等于零,設(shè),直線,則直線分別和拋物線方程聯(lián)立, 解得利用,結(jié)合直線方程,即可證得直線的斜率為定值.

(1)設(shè),,兩式相減,: 由弦中點(diǎn)的縱坐標(biāo)為2,得,.所以拋物線的標(biāo)準(zhǔn)方程.

(2)的平分線與軸垂直,可知直線的斜率存在,且斜率互為相反數(shù),且不等于零,設(shè)直線由點(diǎn)在拋物線,可知上述方程的一個(gè)根為.,同理 .

直線的斜率為定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)當(dāng)時(shí),是什么曲線?

2)當(dāng)時(shí),求的公共點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),以原點(diǎn)O為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的普通方程和的直角坐標(biāo)方程;

2)已知,曲線的交點(diǎn)A, B滿足(A為第一象限的點(diǎn)),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)購(gòu)已經(jīng)成為我們?nèi)粘I钪械囊徊糠,某地區(qū)隨機(jī)調(diào)查了100名男性和100名女性在雙十一活動(dòng)中用于網(wǎng)購(gòu)的消費(fèi)金額,數(shù)據(jù)整理如下:

男性消費(fèi)金額頻數(shù)分布表

消費(fèi)金額

(單位:元)

0~500

500~1000

1000~1500

1500~2000

2000~3000

人數(shù)

15

15

20

30

20

1)試分別計(jì)算男性、女性在此活動(dòng)中的平均消費(fèi)金額;

2)如果分別把男性、女性消費(fèi)金額與中位數(shù)相差不超過200元的消費(fèi)稱作理性消費(fèi),試問是否有5成以上的把握認(rèn)為理性消費(fèi)與性別有關(guān).

附:

0.50

0.40

0.25

0.15

0.10

0.05

0.455

0.708

1.323

2.072

2.706

3.841

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知分別為橢圓的左、右焦點(diǎn),直線過點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于直線于點(diǎn),線段的中垂線交于點(diǎn).記點(diǎn)的軌跡為曲線.

1)求曲線的方程,并說明是什么曲線;

2)若直線與曲線交于兩點(diǎn)、,則在圓上是否存在兩點(diǎn)、,使得,?若存在,請(qǐng)求出的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個(gè)正方形ABCDCDEF有一條公共邊CD,且BCF是等邊三角形,則異面直線ACDF所成角的余弦值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1ab0)的右焦點(diǎn)為F,離心率為,且有3a24b2+1

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)過點(diǎn)F的直線l與橢圓C交于MN兩點(diǎn),過點(diǎn)M作直線x3的垂線,垂足為點(diǎn)P,證明直線NP經(jīng)過定點(diǎn),并求出這個(gè)定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,.給出以下四個(gè)命題:

①分別過點(diǎn),,作的不同于軸的切線,兩切線相交于點(diǎn),則點(diǎn)的軌跡為橢圓的一部分;

②若,相切于點(diǎn),則點(diǎn)的軌跡恒在定圓上;

③若,相離,且,則與,都外切的圓的圓心在定橢圓上;

④若相交,且,則與,一個(gè)內(nèi)切一個(gè)外切的圓的圓心的軌跡為橢圓的一部分.

則以上命題正確的是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在創(chuàng)建全國(guó)衛(wèi)生文明城的過程中,環(huán)保部門對(duì)某市市民進(jìn)行了一次垃圾分類知識(shí)的網(wǎng)絡(luò)問卷調(diào)查,每一位市民僅有一次參加機(jī)會(huì),通過隨機(jī)抽樣,得到參加問卷調(diào)查的1000人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下表所示.

組別

頻數(shù)

25

150

200

250

225

100

50

(Ⅰ)已知此次問卷調(diào)查的得分服從正態(tài)分布,近似為這1000人得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表),請(qǐng)利用正態(tài)分布的知識(shí)求;

(Ⅱ)在(Ⅰ)的條件下,環(huán)保部門為此次參加問卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:

i)得分不低于的可以獲贈(zèng)2次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)1次隨機(jī)話費(fèi);

ii)每次贈(zèng)送的隨機(jī)話費(fèi)和相應(yīng)的概率如下表.現(xiàn)市民甲要參加此次問卷調(diào)查,記為該市民參加問卷調(diào)查獲贈(zèng)的話費(fèi),求的分布列及數(shù)學(xué)期望.

贈(zèng)送的隨機(jī)話費(fèi)(單位:元)

20

40

概率

附:若,則,,.

查看答案和解析>>

同步練習(xí)冊(cè)答案