【題目】設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,b=2 ,B= .
(1)若a=2,求角C;
(2)若D為AC的中點(diǎn),BD= ,求△ABC的面積.
【答案】
(1)解:在△ABC中,由正弦定理可得: ,
∴sinA= = = ,
又a<b,∴A為銳角,A= ,
∴C=π﹣A﹣B= .
(2)解:在△ABC中,由余弦定理可得: = = =﹣ ,化為:a2+c2+ac=12.
在△ABD與△BCD中,由余弦定理可得:cos∠ADB+cos∠BDC= + =0,
化為:a2+c2=10.
與a2+c2+ac=12聯(lián)立解得:ac=2,
∴S△ABC= =
【解析】(1)在△ABC中,由正弦定理可得: ,可得sinA= ,又a<b,可得A為銳角,可得C=π﹣A﹣B.(2)在△ABC中,由余弦定理可得: = =﹣ ,化為:a2+c2+ac=12.在△ABD與△BCD中,由余弦定理可得:cos∠ADB+cos∠BDC=0,化為:a2+c2=10.聯(lián)立解出即可得出.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解正弦定理的定義(正弦定理:),還要掌握余弦定理的定義(余弦定理:;;)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=(kx+4)lnx﹣x(x>1),若f(x)>0的解集為(s,t),且(s,t)中只有一個(gè)整數(shù),則實(shí)數(shù)k的取值范圍為( )
A.( ﹣2, ﹣ )
B.( ﹣2, ﹣ ]
C.( ﹣ , ﹣1]
D.( ﹣ , ﹣1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),證明:對(duì)任意的,有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】各項(xiàng)為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足:Sn= an2+ an+ (n∈N*)
(1)求an
(2)設(shè)數(shù)列{ }的前n項(xiàng)和為T(mén)n , 證明:對(duì)一切正整數(shù)n,都有Tn< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市司法部門(mén)為了宣傳《憲法》舉辦法律知識(shí)問(wèn)答活動(dòng),隨機(jī)對(duì)該市18~68歲的人群抽取一個(gè)容量為n的樣本,并將樣本數(shù)據(jù)分成五組:[18,28),[28,38),[38,48),[48,58),[58,68),再將其按從左到右的順序分別編號(hào)為第1組,第2組,…,第5組,繪制了樣本的頻率分布直方圖;并對(duì)回答問(wèn)題情況進(jìn)行統(tǒng)計(jì)后,結(jié)果如下表所示.
組號(hào) | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù)占本組的比例 |
第1組 | [18,28) | 5 | 0.5 |
第2組 | [28,38) | 18 | a |
第3組 | [38,48) | 27 | 0.9 |
第4組 | [48,58) | x | 0.36 |
第5組 | [58,68) | 3 | 0.2 |
(1)分別求出a,x的值;
(2)從第2,3,4組回答正確的人中用分層抽樣方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?
(3)在(2)的前提下,決定在所抽取的6人中隨機(jī)抽取2人頒發(fā)幸運(yùn)獎(jiǎng),求:所抽取的人中第2組至少有1人獲得幸運(yùn)獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1)證明:PB∥平面AEC;
(2)設(shè)AP=1,AD= ,三棱錐P﹣ABD的體積V= ,求A到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是橢圓的左、右焦點(diǎn),為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,線段與軸的交點(diǎn)為,且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)圓是以為直徑的圓,直線與圓相切,并與橢圓交于不同的兩點(diǎn),,當(dāng),且滿足時(shí),求的面積的取值范圍.
請(qǐng)考生在第22、23兩題中任選一題作答.注意:只能做所選定的題目.如果多做,則按所做的第一個(gè)題目計(jì)分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
如圖,甲向如圖1所示的平面區(qū)域內(nèi)隨機(jī)擲點(diǎn)、乙向如圖2所示的平面區(qū)域內(nèi)隨機(jī)擲點(diǎn),假設(shè)點(diǎn)落在區(qū)域內(nèi)任意一點(diǎn)的可能性相同.已知圖1中小圓的半徑是大圓半徑的二分之一,圖2中小正方形的頂點(diǎn)為大正方形各邊的中點(diǎn).
(1)甲、乙各擲點(diǎn)一次,求至少有一人擲點(diǎn)落在陰影區(qū)域的概率;
(2)甲、乙各擲點(diǎn)兩次,記點(diǎn)落在陰影區(qū)域的次數(shù)為,求的分布列和數(shù)學(xué)期望.
圖1圖2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知復(fù)數(shù)z1=m+ni(m,n∈R),z=x+yi(x,y∈R),z2=2+4i且 .
(1)若復(fù)數(shù)z1對(duì)應(yīng)的點(diǎn)M(m,n)在曲線 上運(yùn)動(dòng),求復(fù)數(shù)z所對(duì)應(yīng)的點(diǎn)P(x,y)的軌跡方程;
(2)將(1)中的軌跡上每一點(diǎn)按向量 方向平移 個(gè)單位,得到新的軌跡C,求C的軌跡方程;
(3)過(guò)軌跡C上任意一點(diǎn)A(異于頂點(diǎn))作其切線,交y軸于點(diǎn)B,求證:以線段AB為直徑的圓恒過(guò)一定點(diǎn),并求出此定點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com