精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=1﹣ ﹣lnx(a∈R).
(1)當a=1時,求函數f(x)的圖象在點( ,f( ))處的切線方程;
(2)當a≥0時,記函數Γ(x)= ax2+(1﹣2a)x+ ﹣1+f(x),試求Γ(x)的單調遞減區(qū)間;
(3)設函數h(a)=3λa﹣2a2(其中λ為常數),若函數f(x)在區(qū)間(0,2)上不存在極值,求h(a)的最大值.

【答案】
(1)解:當a=1時, ,

, ∴函數f(x)的圖象在點 的切線方程為:

即2x﹣y+ln2﹣2=0.


(2)解:∵ ,∴ (x>0),

①當a=0時, ,

及x>0可得:0<x≤1,∴Γ(x)的單調遞減區(qū)間為(0,1]

②當a>0時, ,

由ax2﹣(2a﹣1)x﹣1=0可得:△=(2a﹣1)2+4a=4a2+1>0,

設其兩根為x1,x2,因為 ,所以x1,x2一正一負,

設其正根為x2,則 ,

及x>0可得: ,∴Γ(x)的單調遞減區(qū)間為


(3)解: ,由f'(x)=0x=a,

由于函數f(x)在區(qū)間(0,2)上不存在極值,所以a≤0或a≥2…(10分)對于h(a)=3λa﹣2a2,對稱軸

,即λ≤0或 時, ;

,即 時,h(a)max=h(0)=0;

,即 時,h(a)max=h(2)=6λ﹣8;

綜上可知:


【解析】(1)當a=1時,化簡函數的解析式求出函數的導數,求出斜率以及切點坐標,求解切線方程.(2)化簡函數Γ(x)= ﹣1+f(x)的解析式,求出函數的導數,通過①當a=0時,②當a>0時,分別通過函數的極值點,判斷函數的單調性.求出單調區(qū)間.(3)通過函數的導數為0,求出極值點,利用題意轉化為函數f(x)在區(qū)間(0,2)上不存在極值,求出a的范圍然后求解h(a)max值即可.
【考點精析】掌握利用導數研究函數的單調性是解答本題的根本,需要知道一般的,函數的單調性與其導數的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數在這個區(qū)間單調遞增;(2)如果,那么函數在這個區(qū)間單調遞減.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知三點A(1,﹣1),B(3,0),C(2,1),P為平面ABC上的一點, ,且 =0, =3.
(1)求 ;
(2)求λ+μ 的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分16分)某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設計要求容器的容積為立方米,且.假設該容器的建造費用僅與其表面積有關.已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為)千元.設該容器的建造費用為千元.

1)寫出關于的函數表達式,并求該函數的定義域;

2)求該容器的建造費用最小時的

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列命題中,真命題是(
A.x∈R,2x>x2
B.若a>b,c>d,則 a﹣c>b﹣d
C.x∈R,ex<0
D.ac2<bc2是a<b的充分不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出兩個命題:
命題甲:關于x的不等式x2+(a﹣1)x+a2≤0的解集為;
命題乙:函數y=(2a2﹣a)x為增函數.
(1)甲、乙至少有一個是真命題;
(2)甲、乙有且只有一個是真命題;
分別求出符合(1)(2)的實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】冶煉某種金屬可以用舊設備和改造后的新設備,為了檢驗用這兩種設備生產的產品中所含雜質的關系,調查結果如下表所示:

分類

雜質高

雜質低

舊設備

37

121

新設備

22

202

根據以上數據,則(  )

A. 含雜質的高低與設備改造有關

B. 含雜質的高低與設備改造無關

C. 設備是否改造決定含雜質的高低

D. 以上答案都不對

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在某次試驗中,兩個試驗數據x,y的統(tǒng)計結果如下面的表格1所示.

x

1

2

3

4

5

y

2

3

4

4

5

表格1

(1)在給出的坐標系中畫出數據x,y的散點圖.

(2)補全表格2,根據表格2中的數據和公式求下列問題.

①求出y關于x的回歸直線方程中的.

②估計當x=10時,的值是多少?

表格2

序號

x

y

x2

xy

1

1

2

1

2

2

2

3

4

6

3

3

4

9

12

4

4

4

16

16

5

5

5

25

25

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法正確的是 ( )

A. x<1”“l(fā)og2(x+1)<1”的充分不必要條件

B. 命題x>0,2x>1”的否定是x0≤0,≤1”

C. 命題ab,則ac2bc2的逆命題是真命題

D. 命題a+b≠5,則a≠2b≠3”的逆否命題為真命題

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲,乙兩人進行圍棋比賽,共比賽2n(n∈N+)局,根據以往比賽勝負的情況知道,每局甲勝的概率和乙勝的概率均為 .如果某人獲勝的局數多于另一人,則此人贏得比賽.記甲贏得比賽的概率為P(n).
(1)求P(2)與P(3)的值;
(2)試比較P(n)與P(n+1)的大小,并證明你的結論.

查看答案和解析>>

同步練習冊答案