定義域是一切實(shí)數(shù)的函數(shù),其圖像是連續(xù)不斷的,且存在常數(shù)()使得
對(duì)任意實(shí)數(shù)都成立,則稱是一個(gè)“—伴隨函數(shù)”.有下列關(guān)于“—伴隨函數(shù)”的結(jié)論:
①是常數(shù)函數(shù)中唯一一個(gè)“—伴隨函數(shù)”;
②“—伴隨函數(shù)”至少有一個(gè)零點(diǎn);
③是一個(gè)“—伴隨函數(shù)”;
其中正確結(jié)論的個(gè)數(shù)是 ( )
A.1個(gè); | B.2個(gè); | C.3個(gè); | D.0個(gè); |
A
解析試題分析:①不正確,原因如下.
若f(x)=c≠0,則取λ=-1,則f(x-1)-f(x)=c-c=0,既f(wàn)(x)=c≠0是-1-伴隨函數(shù)
②不正確,原因如下.
若 f(x)=x2是一個(gè)λ-伴隨函數(shù),則(x+λ)2+λx2=0.推出λ=0,λ=-1,矛盾
③正確.若f(x)是-伴隨函數(shù).
則f(x+)+f(x)=0,
取x=0,則f()+f(0)=0,若f(0),f()任一個(gè)為0,函數(shù)f(x)有零點(diǎn).
若f(0),f()均不為零,則f(0),f()異號(hào),由零點(diǎn)存在定理,在(0,)區(qū)間存在x0,
f(x0)=0.即-伴隨函數(shù)至少有一個(gè)零點(diǎn).
故選A。
考點(diǎn):本題考查的知識(shí)點(diǎn)是函數(shù)的概念及構(gòu)成要素,函數(shù)的零點(diǎn)。
點(diǎn)評(píng):新定義問(wèn)題,正確理解f(x)是λ-伴隨函數(shù)的定義,是解答本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知函數(shù)對(duì)任意都有,若的圖象關(guān)于直線對(duì)稱,且,則
A.2 | B.3 | C.4 | D.0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
如圖,不規(guī)則四邊形ABCD中:AB和CD 是線段,AD和BC是圓弧,直線l⊥AB與E,當(dāng)l從左至右移動(dòng)(與線段AB有公共點(diǎn))時(shí),把四邊形ABCD分成兩部分,設(shè)AE=x,則左側(cè)部分面積y 是關(guān)于x的函數(shù),其大致圖象為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
函數(shù)是( )
A.偶函數(shù) | B.既是奇函數(shù)又是偶函數(shù) |
C.奇函數(shù) | D.非奇非偶函數(shù)函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
函數(shù)的零點(diǎn)所在區(qū)間為( )
A.(1,0) | B.(0,1) | C.(1,2) | D.(2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
若函數(shù)滿足且時(shí),,函數(shù),則函數(shù)在區(qū)間內(nèi)的零點(diǎn)的個(gè)數(shù)為( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知定義在R上的函數(shù)滿足以下三個(gè)條件:①對(duì)于任意的,都有;②對(duì)于任意的③函數(shù)的圖象關(guān)于y軸對(duì)稱,則下列結(jié)論中正確的是
A. | B. |
C. | D. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com