【題目】在四棱錐P–ABCD中,,.
(1)設(shè)AC與BD相交于點M,,且平面PCD,求實數(shù)m的值;
(2)若,,,且,求二面角的余弦值.
【答案】(1)
(2)
【解析】
(1)由AB∥CD,得到,由MN∥平面PCD,得MN∥PC,從而,由此能實數(shù)m的值;
(2)由AB=AD,∠BAD=60°,知△ABD為等邊三角形,推導(dǎo)出PD⊥DB,PD⊥AD,從而PD⊥平面ABCD,以D為坐標(biāo)原點,的方向為x,y軸的正方向建立空間直角坐標(biāo)系,由此能求出二面角B﹣PC﹣B的余弦值.
解:(1)因為,所以,即.
因為平面PCD,平面PAC,平面平面,
所以.
所以,即.
(2)因為,,可知為等邊三角形,
所以,又,
故,所以.
由已知,,所以平面ABCD,
如圖,以D為坐標(biāo)原點,的方向為x,y軸的正方向建立空間直角坐標(biāo)系,
設(shè),則,,
所以,,,,
則,,
設(shè)平面PBC的一個法向量為,則有
即.
令,則,即,
設(shè)平面APC的一個法向量為,則有
,即
令,則,即.
所以
設(shè)二面角的平面角為,則.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是奇函數(shù)(其中)
(1)求實數(shù)m的值;
(2)已知關(guān)于x的方程在區(qū)間上有實數(shù)解,求實數(shù)k的取值范圍;
(3)當(dāng)時,的值域是,求實數(shù)n與a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=ax3+3x2+3x(a≠0).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)在區(qū)間(1,2)是增函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為其右頂點為,下頂點為,定點,的面積為過點作與軸不重合的直線交橢圓于兩點,直線分別與軸交于兩點.
(1)求橢圓的方程;
(2)試探究的橫坐標(biāo)的乘積是否為定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線.
(1)用函數(shù)的形式表示曲線;
(2)若直線與曲線有兩個公共點,求實數(shù)的取值范圍;
(3)若點的坐標(biāo)為,為曲線上的點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定函數(shù)和,令,對以下三個論斷:
(1)若和都是奇函數(shù),則也是奇函數(shù);(2)若和都是非奇非偶函數(shù),則也是非奇非偶函數(shù):(3)和之一與有相同的奇偶性;其中正確論斷的個數(shù)為( )
A.0個B.1個C.2個D.3個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校興趣小組在如圖所示的矩形區(qū)域內(nèi)舉行機器人攔截挑戰(zhàn)賽,在處按方向釋放機器人甲,同時在處按某方向釋放機器人乙,設(shè)機器人乙在處成功攔截機器人甲.若點在矩形區(qū)域內(nèi)(包含邊界),則挑戰(zhàn)成功,否則挑戰(zhàn)失。阎米,為中點,機器人乙的速度是機器人甲的速度的2倍,比賽中兩機器人均按勻速直線運動方式行進,記與的夾角為.
(1)若,足夠長,則如何設(shè)置機器人乙的釋放角度才能挑戰(zhàn)成功?(結(jié)果精確到);
(2)如何設(shè)計矩形區(qū)域的寬的長度,才能確保無論的值為多少,總可以通過設(shè)置機器人乙的釋放角度使機器人乙在矩形區(qū)域內(nèi)成功攔截機器人甲?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點為極點,軸的正半軸為極軸,以相同的長度單位建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,
(l)設(shè)為參數(shù),若,求直線的參數(shù)方程;
(2)已知直線與曲線交于,設(shè),且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)報道,全國很多省市將英語考試作為高考改革的重點,一時間“英語考試該如何改革”引起廣泛關(guān)注,為了解某地區(qū)學(xué)生和包括老師、家長在內(nèi)的社會人士對高考英語改革的看法,某媒體在該地區(qū)選擇了3600人進行調(diào)查,就“是否取消英語聽力”問題進行了問卷調(diào)查統(tǒng)計,結(jié)果如下表:
態(tài)度 調(diào)查人群 | 應(yīng)該取消 | 應(yīng)該保留 | 無所謂 |
在校學(xué)生 | 2100人 | 120人 | 人 |
社會人士 | 600人 | 人 | 人 |
(1)已知在全體樣本中隨機抽取人,抽到持“應(yīng)該保留”態(tài)度的人的概率為,現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取人進行問卷訪談,問應(yīng)在持“無所謂”態(tài)度的人中抽取多少人?
(2)在持“應(yīng)該保留”態(tài)度的人中,用分層抽樣的方法抽取人,再平均分成兩組進行深入交流,求第一組中在校學(xué)生人數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com