【題目】已知函數(shù)f(x)=|x﹣a|+|x+1|(a∈R),g(x)=|2x﹣1|+2.
(1)若a=1,證明:不等式f(x)≤g(x)對任意的x∈R成立;
(2)若對任意的m∈R,都有t∈R,使得f(m)=g(t)成立,求實數(shù)a的取值范圍.
【答案】(1)證明見解析;(2)a≤﹣3或a≥1.
【解析】
(1)a=1時函數(shù),利用分段討論法比較f(x)與g(x)的大小即可;
(2)由題意知f(x)的值域包含于g(x)的值域,分別求出f(x)、g(x)的值域,列出不等式求得a的取值范圍.
(1)a=1時,函數(shù)f(x)=|x﹣1|+|x+1|,
g(x)=|2x﹣1|+2;
①當x≥1時,2x<2x+1,即f(x)<g(x);
②當x<1時,2≤2x+1,即;
③當﹣1<x時,2<﹣2x+3,即f(x)<g(x);
④當x≤﹣1時,﹣2x<﹣2x+3,即f(x)<g(x);
綜上知,a=1時,不等式f(x)≤g(x)對任意的x∈R成立;
(2)對任意的m∈R,都有t∈R,使得f(m)=g(t)成立,
所以f(x)的值域包含于g(x)的值域;
由f(x)=|x﹣a|+|x+1|≥|(x﹣a)﹣(x+1)|=|a+1|,
所以f(x)的值域為[|a+1|,+∞);
又g(x)=|2x﹣1|+2≥2,
所以g(x)的值域為[2,+∞);
所以|a+1|≥2,即a+1≥2或a+1≤﹣2,解得a≥1或a≤﹣3;
所以實數(shù)a的取值范圍是a≤﹣3或a≥1.
科目:高中數(shù)學 來源: 題型:
【題目】已知點P(1,2)在拋物線C:y2=2px(p>0)上.
(Ⅰ)求C的方程;
(Ⅱ)斜率為﹣1的直線與C交于異于點P的兩個不同的點M,N,若直線PM,PN分別與x軸交于A,B兩點,求證:△PAB為等腰三角形.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,其中為自然對數(shù)的底數(shù).
(Ⅰ)若曲線在點處的切線與直線垂直,求實數(shù)的值;
(Ⅱ)求函數(shù)的單調區(qū)間;
(Ⅲ)用表示,中的較大者,記函數(shù).若函數(shù)在內恰有2個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:l(a>b>0)經(jīng)過點(,1),且離心率e.
(1)求橢圓C的方程;
(2)若直線l與橢圓C相交于AB兩點,且滿足∠AOB=90°(O為坐標原點),求|AB|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某土特產(chǎn)超市為預估2020年元旦期間游客購買土特產(chǎn)的情況,對2019年元旦期間的90位游客購買情況進行統(tǒng)計,得到如下人數(shù)分布表.
購買金額(元) | ||||||
人數(shù) | 10 | 15 | 20 | 15 | 20 | 10 |
(1)求購買金額不少于45元的頻率;
(2)根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并判斷是否有的把握認為購買金額是否少于60元與性別有關.
不少于60元 | 少于60元 | 合計 | |
男 | 40 | ||
女 | 18 | ||
合計 |
附:參考公式和數(shù)據(jù):,.
附表:
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | |
0.150 | 0.100 | 0.050 | 0.010 | 0.005 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,滿足,且.正項數(shù)列滿足,其前7項和為42.
(1)求數(shù)列和的通項公式;
(2)令,數(shù)列的前項和為,若對任意正整數(shù),都有,求實數(shù)的取值范圍;
(3)將數(shù)列,的項按照“當為奇數(shù)時,放在前面;當為偶數(shù)時,放在前面”的要求進行排列,得到一個新的數(shù)列:,,,,,,,,,,,…,求這個新數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在等腰中,,,分別為,的中點,為的中點,在線段上,且。將沿折起,使點到的位置(如圖2所示),且。
(1)證明:平面;
(2)求平面與平面所成銳二面角的余弦值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若偶函數(shù)y=f(x)(滿足f(1+x)=f(1-x),且當時,,則函數(shù)g(x)=f(x)-的零點個數(shù)為_________個.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com