【題目】某公司為了促進某產品的銷售,隨機調查了該產品的月銷售單價x(單位:元/件)及相應月銷量y(單位:萬件),對近5個月的月銷售單價和月銷售量的數(shù)據(jù)進行了統(tǒng)計,得到如下數(shù)表:

月銷售單價(元/件)

8

8.5

9

9.5

10

月銷售量(萬件)

11

10

8

6

5

1)建立關于的回歸直線方程;

2)該公司年底開展促銷活動,當月銷售單價為7/件時,其月銷售量達到14.8萬件,若由回歸直線方程得到的預測數(shù)據(jù)與此次促銷活動的實際數(shù)據(jù)之差的絕對值不超過0.5萬件,則認為所得到的回歸直線方程是理想的,試問(1)中得到的回歸直線方程是否理想?

3)根據(jù)(1)的結果,若該產品成本是5/件,月銷售單價為何值時,公司月利潤的預報值最大?(注:利潤=銷售收入-成本).

參考公式:回歸直線方程,其中,

參考數(shù)據(jù):,

【答案】(1) ;(2) 是理想的;(3) 新產品單價定為元公司才能獲得最大利潤

【解析】

(1)分別求出,再利用公式求解,代入樣本中心點求即可.

(2)代入求殘差的絕對值判斷即可.

(3)表達出銷售利潤關于的表達式,再利用二次函數(shù)在對稱軸處取得最值求解即可.

解:(1)因為

所以,則

于是關于的回歸直線方程為

2)當時,,則

所以可以認為所得到的回歸直線方程是理想的;

3)令銷售利潤為M,則

所以時,取最大值.

所以該新產品單價定為元公司才能獲得最大利潤

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】有一塊三角形邊角地,如圖,,.(單位為百米).欲利用這塊地修一個三角形形狀的草坪(圖中)供市民休閑,其中點在邊上,點在邊上,沿的三邊修建休閑長廊,規(guī)劃部門要求的面積占面積的一半,設(百米),的周長為(百米)

(1)求出函數(shù)的解析式及定義域

(2)求出休閑長廊總長度的取值范圍,并確定當取到最大值時點的位置

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2014年7月18日15時,超強臺風“威馬遜”登陸海南。畵(jù)統(tǒng)計,本次臺風造成全省直接經(jīng)濟損失119.52億元.適逢暑假,小明調查住在自己小區(qū)的50戶居民由于臺風造成的經(jīng)濟損失,作出如下頻率分布直方圖:

經(jīng)濟損失

4000元以下

經(jīng)濟損失

4000元以上

合計

捐款超過500元

30

捐款低于500元

6

合計

(1)臺風后區(qū)委會號召小區(qū)居民為臺風重災區(qū)捐款,小明調查的50戶居民捐款情況如上表,在表格空白處填寫正確數(shù)字,并說明是否有以上的把握認為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟損失是否到4000元有關?

(2)臺風造成了小區(qū)多戶居民門窗損壞,若小區(qū)所有居民的門窗均由李師傅和張師傅兩人進行維修,李師傅每天早上在7:00到8:00之間的任意時刻來到小區(qū),張師傅每天早上在7:30到8:30分之間的任意時刻來到小區(qū),求連續(xù)3天內,李師傅比張師傅早到小區(qū)的天數(shù)的數(shù)學期望.

附:臨界值表

參考公式: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,是兩條不同的直線,是三個不同的平面,給出下列四個命題:

①若,,則

②若,,則

③若,,則

④若,,則

其中正確命題的序號是(

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,點,點,動圓軸相切于點,過點的直線與圓相切于點,過點的直線與圓相切于點均不同于點),且交于點,設點的軌跡為曲線.

(1)證明:為定值,并求的方程;

(2)設直線的另一個交點為,直線交于兩點,當三點共線時,求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合,若對于任意實數(shù)對,存在,使成立,則稱集合垂直對點集” .給出下列四個集合:

;

.

其中是垂直對點集的序號是( .

A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求函數(shù)在區(qū)間上的值域.

(2)對于任意,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設雙曲線 的左右焦點分別為,過的直線分別交雙曲線左右兩支于點M,N.若以MN為直徑的圓經(jīng)過點,則雙曲線的離心率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三個校區(qū)分別位于扇形OAB的三個頂點上,點Q是弧AB的中點,現(xiàn)欲在線段OQ上找一處開挖工作坑P(不與點O,Q重合),為小區(qū)鋪設三條地下電纜管線PO,PA,PB,已知OA=2千米,∠AOB=,記∠APQ=θrad,地下電纜管線的總長度為y千米.

(1)將y表示成θ的函數(shù),并寫出θ的范圍;

(2)請確定工作坑P的位置,使地下電纜管線的總長度最小.

查看答案和解析>>

同步練習冊答案