【題目】設(shè)雙曲線 的左右焦點分別為,過的直線分別交雙曲線左右兩支于點M,N.若以MN為直徑的圓經(jīng)過點,則雙曲線的離心率為(

A.B.C.D.

【答案】C

【解析】

由題意可得△MNF2為等腰直角三角形,設(shè)|MF2||NF2|m,則|MN|m,運用雙曲線的定義,求得|MN|4a,可得m,再由勾股定理可得a,c的關(guān)系,即可得到所求離心率.

若以MN為直徑的圓經(jīng)過右焦點F2

,又|MF2||NF2|,

可得△MNF2為等腰直角三角形,

設(shè)|MF2||NF2|m,則|MN|m,

|MF2||MF1|2a,|NF1||NF2|2a,

兩式相加可得|NF1||MF1||MN|4a,

即有m2a,

在直角三角形HF1F2中可得

4c24a2+2a+2a2a2,

化為c23a2,

e

故選C

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知極點為直角坐標系的原點,極軸為軸正半軸且單位長度相同的極坐標系中曲線,為參數(shù)).

(Ⅰ)求曲線上的點到曲線距離的最小值;

(Ⅱ)若把上各點的橫坐標都擴大原來為原來的2倍,縱坐標擴大原來的倍,得到曲線,設(shè),曲線交于,兩點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)證明:;

2)設(shè),上的極值點從小到大排列為,求證:時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐A-BCD中,ADBD,ACBC,∠DAB,∠BAC.三棱錐的外接球的表面積為16π,則該三棱錐的體積的最大值為(   )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是某小區(qū)2017年1月至2018年1月當月在售二手房均價(單位:萬元/平方米)的散點圖.(圖中月份代碼1—13分別對應(yīng)2017年1月—2018年1月)

由散點圖選擇兩個模型進行擬合,經(jīng)過數(shù)據(jù)處理得到兩個回歸方程分別為,并得到以下一些統(tǒng)計量的值:

殘差平方和

0.000591

0.000164

總偏差平方和

0.006050

(1)請利用相關(guān)指數(shù)判斷哪個模型的擬合效果更好;

(2)某位購房者擬于2018年6月份購買這個小區(qū)平方米的二手房(欲

購房為其家庭首套房).若購房時該小區(qū)所有住房的房產(chǎn)證均已滿2年但未滿5年,請你利用(1)中擬合效果更好的模型估算該購房者應(yīng)支付的購房金額.(購房金額=房款+稅費;房屋均價精確到0.001萬元/平方米)

附注:根據(jù)有關(guān)規(guī)定,二手房交易需要繳納若干項稅費,稅費是按房屋的計稅價格進行征收.(計稅價格=房款),征收方式見下表:

契稅

(買方繳納)

首套面積90平方米以內(nèi)(含90平方米)為1%;首套面積90平方米以上且144平方米以內(nèi)(含144平方米)為1.5%;面積144平方米以上或非首套為3%

增值稅

(賣方繳納)

房產(chǎn)證未滿2年或滿2年且面積在144平方米以上(不含144平方米)為5.6%;其他情況免征

個人所得稅

(賣方繳納)

首套面積144平方米以內(nèi)(含144平方米)為1%;面積144平方米以上或非首套均為1.5%;房產(chǎn)證滿5年且是家庭唯一住房的免征

參考數(shù)據(jù):,,,,,. 參考公式:相關(guān)指數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)的導函數(shù),的部分圖象如圖所示,,當,時,則的最大值為_________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地有兩個國家AAAA級景區(qū)—甲景區(qū)和乙景區(qū).相關(guān)部門統(tǒng)計了這兩個景區(qū)20191月至6月的客流量(單位:百人),得到如圖所示的莖葉圖.關(guān)于20191月至6月這兩個景區(qū)的客流量,下列結(jié)論正確的是( )

A.甲景區(qū)客流量的中位數(shù)為13000

B.乙景區(qū)客流量的中位數(shù)為13000

C.甲景區(qū)客流量的平均值比乙景區(qū)客流量的平均值小

D.甲景區(qū)客流量的極差比乙景區(qū)客流量的極差大

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)在其定義域上既是奇函數(shù),又是增函數(shù)的是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

)當,判斷的奇偶性,并說明理由;

)當,,的值;

)若,且對任何不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案