【題目】設(shè),是兩條不同的直線,,,是三個不同的平面,給出下列四個命題:
①若,,則
②若,,,則
③若,,則
④若,,則
其中正確命題的序號是( )
A.①和②B.②和③C.③和④D.①和④
【答案】A
【解析】
根據(jù)線面平行性質(zhì)定理,結(jié)合線面垂直的定義,可得①是真命題;根據(jù)面面平行的性質(zhì)結(jié)合線面垂直的性質(zhì),可得②是真命題;在正方體中舉出反例,可得平行于同一個平面的兩條直線不一定平行,垂直于同一個平面和兩個平面也不一定平行,可得③④不正確.由此可得本題的答案.
解:對于①,因為,所以經(jīng)過作平面,使,可得,
又因為,,所以,結(jié)合得.由此可得①是真命題;
對于②,因為且,所以,結(jié)合,可得,故②是真命題;
對于③,設(shè)直線、是位于正方體上底面所在平面內(nèi)的相交直線,
而平面是正方體下底面所在的平面,
則有且成立,但不能推出,故③不正確;
對于④,設(shè)平面、、是位于正方體經(jīng)過同一個頂點的三個面,
則有且,但是,推不出,故④不正確.
綜上所述,其中正確命題的序號是①和②
故選:
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的右焦點與短軸兩個端點的連線互相垂直.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點為橢圓的上一點,過原點且垂直于的直線與直線交于點,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列有關(guān)命題的說法錯誤的是( )
A. 若“”為假命題,則p,q均為假命題
B. “ ”是“”的充分不必要條件
C. “”的必要不充分條件是“”
D. 若命題p:,,則命題:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( )
A. 命題“”,則:“”
B. 命題“若,則”的否命題是真命題
C. 若為假命題,則為假命題
D. 若是的充分不必要條件,則是的必要不充分條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018衡水金卷(二)】如圖,矩形中, 且, 交于點.
(I)若點的軌跡是曲線的一部分,曲線關(guān)于軸、軸、原點都對稱,求曲線的軌跡方程;
(II)過點作曲線的兩條互相垂直的弦,四邊形的面積為,探究是否為定值?若是,求出此定值,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點的極坐標(biāo)為,直線的極坐標(biāo)方程為,且點在直線上.
(1)求的值及直線的直角坐標(biāo)方程;
(2)圓的極坐標(biāo)方程為,試判斷直線與圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是 (為參數(shù)),以原點為極點, 軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;
(Ⅱ)已知直線與曲線交于, 兩點,與軸交于點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點E到點A與點B的直線斜率之積為,點E的軌跡為曲線C.
(1)求C的方程;
(2)過點D作直線l與曲線C交于, 兩點,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com