【題目】.(本小題滿分14分)已知等比數(shù)列的公比為,首項為,其前項的和為.數(shù)列的前項的和為, 數(shù)列的前項的和為
(Ⅰ)若,,求的通項公式;(Ⅱ)①當為奇數(shù)時,比較與的大; ②當為偶數(shù)時,若,問是否存在常數(shù)(與n無關(guān)),使得等式恒成立,若存在,求出的值;若不存在,說明理由
【答案】解: (Ⅰ)∵, ∴ ∴或 ………………2分
∴,或. ……………………………………4分
(Ⅱ) ∵常數(shù), =常數(shù),
∴數(shù)列,均為等比數(shù)列,首項分別為,,公比分別為,.………………6分
①當為奇數(shù)時, 當時, ,,, ∴.
當時, ,,, ∴. ……………………8分
當時, 設(shè),
,,,
∴. 綜上所述,當為奇數(shù)時,. ……………………10分
②當為偶數(shù)時,∵,∴,,.
∴=
= ………………………………12分
由題設(shè),對所有的偶數(shù)n恒成立,又,∴.………………13分
∴存在常數(shù),使得等式恒成立.………………………………14分
【解析】略
科目:高中數(shù)學 來源: 題型:
【題目】某班學生進行了三次數(shù)學測試,第一次有8名學生得滿分,第二次有10名學生得滿分,第三次有12名學生得滿分,已知前兩次均為滿分的學生有5名,三次測試中至少又一次得滿分的學生有15名.若后兩次均為滿分的學生至多有名,則的值為( )
A. 7 B. 8 C. 9 D. 10
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是奇函數(shù)。
(1)求實數(shù)m的值;
(2)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并給出證明;
(3)當x∈(n,a-2)時,函數(shù)f(x)的值域是(1,+∞),求實數(shù)a與n的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】穩(wěn)定房價是我國今年實施宏觀調(diào)控的重點,國家最近出臺的一系列政策已對各地的房地產(chǎn)市場產(chǎn)生了影響.北京市某房地產(chǎn)介紹所對本市一樓群在今年的房價作了統(tǒng)計與預(yù)測:發(fā)現(xiàn)每個季度的平均單價y(每平方米面積的價格,單位為元)與第x季度之間近似滿足:y=500sin(ωx+)+9500 (>0),已知第一、二季度平均單價如下表所示:
x | 1 | 2 | 3 |
y | 10000 | 9500 | ? |
則此樓群在第三季度的平均單價大約是 ( )
A.10000元
B.9500元
C.9000元
D.8500元
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù),
(I)當時,求函數(shù)的最小值;
(Ⅱ)若函數(shù)在上有零點,求實數(shù)的范圍;
(III)證明不等式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】動點A(x , y)在圓x2+y2=1上繞坐標原點沿逆時針方向勻速旋轉(zhuǎn),12秒旋轉(zhuǎn)一周.已知時間t=0時,點A的坐標是( , ),則當0≤t≤12時,動點A的縱坐標y關(guān)于 t(單位:秒)的函數(shù)的單調(diào)遞增區(qū)間是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)f(x)= ,存在一個正數(shù)b,使得f(x)的定義域和值域相同,則非零實數(shù)a的值為( )
A.2
B.﹣2
C.﹣4
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=log2(x+1),g(x)=log2(3x+1).
(1)求出使g(x)≥f(x)成立的x的取值范圍;
(2)當x∈[0,+∞)時,求函數(shù)y=g(x)﹣f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).
(Ⅰ)求f()的值.
(Ⅱ)求f(x)的最小正周期及單調(diào)遞增區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com