已知為橢圓的左、右焦點(diǎn),是橢圓上一點(diǎn),若。
(1)求橢圓方程;
(2)若求的面積。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
平面直角坐標(biāo)系和極坐標(biāo)系的原點(diǎn)與極點(diǎn)重合,軸的正半軸與極軸重合,單位長(zhǎng)度相同。已知曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為,射線,,與曲線交于極點(diǎn)以外的三點(diǎn)A,B,C.
(1)求證:;
(2)當(dāng)時(shí),B,C兩點(diǎn)在曲線上,求與的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)分別為,,點(diǎn)在橢圓 上,過點(diǎn)的直線與拋物線交于兩點(diǎn),拋物線在點(diǎn)處的切線分別為,且與交于點(diǎn).
(1) 求橢圓的方程;
(2) 是否存在滿足的點(diǎn)? 若存在,指出這樣的點(diǎn)有幾個(gè)(不必求出點(diǎn)的坐標(biāo)); 若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的方程為左、右焦點(diǎn)分別為F1、F2,焦距為4,點(diǎn)M是橢圓C上一點(diǎn),滿足
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)P(0,2)分別作直線PA,PB交橢圓C于A,B兩點(diǎn),設(shè)直線PA,PB的斜率分別為k1,k2,,求證:直線AB過定點(diǎn),并求出直線AB的斜率k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)是F拋物線與橢圓的公共焦點(diǎn),且橢圓的離心率為
(1)求橢圓的方程;
(2)過拋物線上一點(diǎn)P,作拋物線的切線,切點(diǎn)P在第一象限,如圖,設(shè)切線與橢圓相交于不同的兩點(diǎn)A、B,記直線OP,F(xiàn)A,FB的斜率分別為(其中為坐標(biāo)原點(diǎn)),若,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的長(zhǎng)軸長(zhǎng)為,焦點(diǎn)是,點(diǎn)到直線的距離為,過點(diǎn)且傾斜角為銳角的直線與橢圓交于兩點(diǎn),使得.
(1)求橢圓的方程;(2)求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,點(diǎn)B是軸上的動(dòng)點(diǎn),過B作AB的垂線交軸于點(diǎn)Q,若
,.
(1)求點(diǎn)P的軌跡方程;
(2)是否存在定直線,以PM為直徑的圓與直線的相交弦長(zhǎng)為定值,若存在,求出定直線方程;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓O:,直線l:與橢圓C:相交于P、Q兩點(diǎn),O為原點(diǎn).
(Ⅰ)若直線l過橢圓C的左焦點(diǎn),且與圓O交于A、B兩點(diǎn),且,求直線l的方程;
(Ⅱ)如圖,若重心恰好在圓上,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,點(diǎn)為橢圓的右頂點(diǎn), 點(diǎn),點(diǎn)在橢圓上, .
(1)求直線的方程;
(2)求直線被過三點(diǎn)的圓截得的弦長(zhǎng);
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com