【題目】小劉同學(xué)在課外活動中觀察吊車的工作過程,繪制了如圖所示的平面圖形.已知吊車吊臂的支點O距離地面的高OO′=2米.當(dāng)?shù)醣垌敹擞?/span>A點抬升至A′點(吊臂長度不變)時,地面B處的重物(大小忽略不計)被吊至B′處,緊繃著的吊纜A′B′=AB.AB垂直地面O′B于點B,A′B′垂直地面O′B于點C,吊臂長度OA′=OA=10米,且cosA=,sinA′=.
(1)求此重物在水平方向移動的距離BC;
(2)求此重物在豎直方向移動的距離B′C.(結(jié)果保留根號)
【答案】(1)3米.(2)(-6)米.
【解析】
此題首先把實際問題轉(zhuǎn)化為解直角三角形問題來解決,(1)先過點O作OD⊥AB于點D,交A′C于點E,則得出EC=DB=OO′=2,ED=BC,通過解直角三角形AOD和A′OE得出OD與OE,從而求出BC.
(2)先解直角三角形A′OE,得出A′E,然后求出B′C.
(1)過點O作OD⊥AB于點D,交A′C于點E
根據(jù)題意可知EC=DB=OO′=2米,ED=BC
∴∠A′ED=∠ADO=90°.
在Rt△AOD中,∵cosA=,OA=10米,
∴AD=6米,
∴OD==8米.
在Rt△A′OE中,
∵sinA′=,
OA′=10米
∴OE=5米.
∴BC=ED=OD-OE=8-5=3米.
(2)在Rt△A′OE中,
A′E==5米.
∴B′C=A′C-A′B′
=A′E+CE-AB
=A′E+CE-(AD+BD)
=5+2-(6+2)
=5-6(米).
答:此重物在水平方向移動的距離BC是3米,此重物在豎直方向移動的距離B′C是(5-6)米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB垂直弦CD于點E,點F在AB的延長線上,且∠BCF=∠A.
(1)求證:直線CF是⊙O的切線;
(2)若⊙O的半徑為5,DB=4.求sin∠D的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為4,點B是圓上一動點,點A為⊙O內(nèi)一定點,OA=4,將AB繞A點順時針方向旋轉(zhuǎn)120°到AC,以AB、BC為鄰邊作ABCD,對角線AC、BD交于E,則OE的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與軸交于點、,與軸交于點,直線交二次函數(shù)圖象的對稱軸于點,若點C為的中點.
(1)求的值;
(2)若二次函數(shù)圖象上有一點,使得,求點的坐標(biāo);
(3)對于(2)中的點,在二次函數(shù)圖象上是否存在點,使得∽?若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從一副完整的撲克牌中任意抽取1張,下列事件與抽到“A”的概率相同的是( )
A.抽到“大王”B.抽到“Q”C.抽到“小王”D.抽到“紅桃”
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=2,CD=1,連接AC,以對角線AC為邊,按逆時針方向作矩形ABCD的相似矩形AB1C1C,再連接AC1,以對角線AC1為邊作矩形AB1C1C的相似矩形AB2C2C1,......,按此規(guī)律繼續(xù)下去,則矩形AB2019C2019C2018的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場購進(jìn)一種每件價格為90元的新商品,在商場試銷時發(fā)現(xiàn):銷售單價元件與每天銷售量件之間滿足如圖所示的關(guān)系.
求出y與x之間的函數(shù)關(guān)系式;
寫出每天的利潤W與銷售單價x之間的函數(shù)關(guān)系式,并求出售價定為多少時,每天獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A.任意擲一枚質(zhì)地均勻的硬幣10次,一定有5次正面向上
B.通過拋擲一枚均勻的硬幣確定誰先發(fā)球的比賽規(guī)則是不公平的
C.“367人中至少有2人生日相同”是必然事件
D.四張分別畫有等邊三角形、平行四邊形、菱形、圓的卡片,從中隨機(jī)抽取一張,恰好抽到中心對稱圖形的概率是.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com