【題目】如圖1,在正方形ABCD中,點(diǎn)E是AB邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)E與點(diǎn)A,B不重合),連接CE,過點(diǎn)B作BF⊥CE于點(diǎn)G,交AD于點(diǎn)F.
(1)求證:;
(2)如圖2,當(dāng)點(diǎn)E運(yùn)動(dòng)到AB中點(diǎn)時(shí),連接DG,求證:DC=DG;
(3)如圖3,在(2)的條件下,過點(diǎn)C作CM⊥DG于點(diǎn)H,分別交AD,BF于點(diǎn)M,N,求的值.
【答案】(1)見解析;(2)見解析;(3).
【解析】
(1)先判斷出,再由四邊形是正方形,得出,,即可得出結(jié)論;
(2)過點(diǎn)作于,設(shè),先求出,進(jìn)而得出,再求出,,再判斷出,進(jìn)而判斷出,即可得出結(jié)論;
(3)先求出,再求出,再判斷出,求出,再用勾股定理求出,最后判斷出,得出,即可得出結(jié)論.
(1)證明:∵,
∴,
∴,
∵四邊形是正方形,
∴,
∴,
∴,
∴;
(2)證明:如圖2,過點(diǎn)作于,
設(shè),
∵點(diǎn)是的中點(diǎn),
∴,
∴,
在中,根據(jù)面積相等,得,
∴,
∴,
∵,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
∴;
(3)解:如圖3,過點(diǎn)作于,
,
∴,
在中, ,
∴,
∵,
∴,
∴,
∴,
∴,
在中,,
∴,
∵,
∴,
∴,
∴,
∴,
∴,
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年突如其來的肺炎疫情,給我們的生活和學(xué)習(xí)帶來了諸多不便.圖1是2月1日至2月5日全國“新冠肺炎”疫情新增數(shù)據(jù)統(tǒng)計(jì)圖,為了控制疫情蔓延擴(kuò)散,國家全面落實(shí)疫情防控工作,舉國上下眾志成城,圖2是3月5日至3月9日全國“新冠肺炎”疫情新增數(shù)據(jù)統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖解答以下問題:
(1)寫出2月3日全國新增確診病例數(shù),并計(jì)算3月5日至3月9日全國新增確診病例數(shù)的平均數(shù).
(2)對(duì)比兩幅統(tǒng)計(jì)圖中的數(shù)據(jù),選擇一個(gè)角度分析評(píng)價(jià)此次疫情控制情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)是(3,0),點(diǎn)C的坐標(biāo)是(0,﹣3),動(dòng)點(diǎn)P在拋物線上.
(1)b= ,c= ,點(diǎn)B的坐標(biāo)為 ;
(2)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說明理由;
(3)是否存在點(diǎn)P使得∠PCA=15°,若存在,請(qǐng)直接寫出點(diǎn)P的橫坐標(biāo).若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,AB∥DC,AB=BC,BD平分∠ABC,過點(diǎn)C作CE⊥AB交AB的延長線于點(diǎn)E,連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若AB=2,BD=4,求OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y1=kx+b與反比例函數(shù)y2=(n>0)交于點(diǎn)A(1,3),B(3,m).
(1)分別求兩個(gè)函數(shù)的解析式;
(2)根據(jù)圖像直接寫出,當(dāng)x為何值時(shí),y1<y2;
(3)在x軸上找一點(diǎn)P,使得△OAP的面積為6,求出P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)y1=與一次函數(shù)y2=k2x+b的圖象交于點(diǎn)A(2,4),B(﹣4,m)兩點(diǎn).
(1)求k1,k2,b的值;
(2)求△AOB的面積;
(3)請(qǐng)直接寫出不等式≥k2x+b的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長為2的菱形ABCD中,E是邊AD的中點(diǎn),點(diǎn)F、G、H分別在邊AB、BC、CD上,且FG⊥EF,EH⊥EF.
(1)如圖1,當(dāng)點(diǎn)是邊中點(diǎn)時(shí),求證:四邊形是矩形;
(2)如圖2,當(dāng)時(shí),求值;
(3)當(dāng),且四邊形是矩形時(shí)(點(diǎn)不與中點(diǎn)重合),求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖AB是⊙O的直徑,PA與⊙O相切于點(diǎn)A,BP與⊙O相交于點(diǎn)D,C為⊙O上的一點(diǎn),分別連接CB、CD,∠BCD=60°.
(1)求∠ABD的度數(shù);
(2)若AB=6,求PD的長度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com