【題目】在邊長為2的菱形ABCD中,E是邊AD的中點(diǎn),點(diǎn)F、G、H分別在邊AB、BC、CD上,且FG⊥EF,EH⊥EF.
(1)如圖1,當(dāng)點(diǎn)是邊中點(diǎn)時(shí),求證:四邊形是矩形;
(2)如圖2,當(dāng)時(shí),求值;
(3)當(dāng),且四邊形是矩形時(shí)(點(diǎn)不與中點(diǎn)重合),求的長.
【答案】(1)見解析;(2);(3)或
【解析】
(1)連接、,由菱形的性質(zhì)及三角形的中位線定理證得,,從而可知四邊形是平行四邊形,再由有一個(gè)角為直角的平行四邊形是矩形得出結(jié)論;
(2)連接,由菱形的性質(zhì)及可得,及,從而判定,結(jié)合及菱形的性質(zhì)可得答案;
(3)如圖,過點(diǎn)作于點(diǎn),過點(diǎn)作延長線于點(diǎn),根據(jù)及菱形的邊長可求得,.設(shè),則,當(dāng)四邊形是矩形時(shí),,則與相似(三垂直模型),分兩種情況列式計(jì)算即可:①,②.
解:(1)連接、,
菱形中,是邊的中點(diǎn),點(diǎn)是邊中點(diǎn),
,,
,.
,
,
四邊形是平行四邊形,
,
,
四邊形是矩形;
(2)連接,
菱形中,,
,
,
,
,
又菱形中,,
,
,
,
,
;
(3)如圖,過點(diǎn)作于點(diǎn),過點(diǎn)作延長線于點(diǎn),
四邊形是矩形,
,
由(2)可知,,
此時(shí),
又菱形邊長為2,
,
,
,
,
.
設(shè),則,
當(dāng)四邊形是矩形時(shí),,則與相似(三垂直模型).
①若,
則,
,
解得,(點(diǎn)不與中點(diǎn)重合,舍去);
②若,
則,
,
解得.
綜上,的長為或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班舉行跳繩比賽,賽后整理參賽學(xué)生的成績,將學(xué)生成績分為A、B、C、D四個(gè)等級,并將結(jié)果繪制成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,但均不完善.
請你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)參加比賽的學(xué)生共有______名;
(2)在扇影統(tǒng)計(jì)圖中,m的值為_____,表示D等級的扇形的圓心角為____度;
(3)先決定從本次比賽獲得B等級的學(xué)生中,選出2名去參加學(xué)校的游園活動,已知B等級學(xué)生中男生有2名,其他均為女生,請用列表法或畫樹狀圖法求出所選2名學(xué)生給好是一名男生一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,點(diǎn)E是AB邊上的一個(gè)動點(diǎn)(點(diǎn)E與點(diǎn)A,B不重合),連接CE,過點(diǎn)B作BF⊥CE于點(diǎn)G,交AD于點(diǎn)F.
(1)求證:;
(2)如圖2,當(dāng)點(diǎn)E運(yùn)動到AB中點(diǎn)時(shí),連接DG,求證:DC=DG;
(3)如圖3,在(2)的條件下,過點(diǎn)C作CM⊥DG于點(diǎn)H,分別交AD,BF于點(diǎn)M,N,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】爸爸沿街勻速行走,發(fā)現(xiàn)每隔7分鐘從背后駛過一輛103路公交車,每隔5分鐘從迎面駛來一輛103路公交車,假設(shè)每輛103路公交車行駛速度相同,而且103路公交車總站每隔固定時(shí)間發(fā)一輛車,那么103路公交車行駛速度是爸爸行走速度的__倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的直徑AB=4,⊙D與半徑為1的⊙C外切,且⊙C與⊙D均與直徑AB相切、與⊙O內(nèi)切,那么⊙D的半徑是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“宏揚(yáng)傳統(tǒng)文化,打造書香校園”活動中,學(xué)校計(jì)劃開展四項(xiàng)活動:“A﹣國學(xué)誦讀”、“B﹣演講”、“C﹣課本劇”、“D﹣書法”,要求每位同學(xué)必須且只能參加其中一項(xiàng)活動,學(xué)校為了了解學(xué)生的意愿,隨機(jī)調(diào)查了部分學(xué)生,結(jié)果統(tǒng)計(jì)如下:
(1)如圖,希望參加活動C占20%,希望參加活動B占15%,則被調(diào)查的總?cè)藬?shù)為 人,扇形統(tǒng)計(jì)圖中,希望參加活動D所占圓心角為 度,根據(jù)題中信息補(bǔ)全條形統(tǒng)計(jì)圖.
(2)學(xué),F(xiàn)有800名學(xué)生,請根據(jù)圖中信息,估算全校學(xué)生希望參加活動A有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,AC=BC=2,正方形CDEF的頂點(diǎn)D、F分別在AC、BC邊上,設(shè)CD的長度為x,△ABC與正方形CDEF重疊部分的面積為y,則下列圖象中能表示y與x之間的函數(shù)關(guān)系的是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,直線與x 軸交于點(diǎn)A,與y軸交于點(diǎn)C.拋物線y=ax2+bx+c的對稱軸是且經(jīng)過A、C兩點(diǎn),與x軸的另一交點(diǎn)為點(diǎn)B.
(1)①直接寫出點(diǎn)B的坐標(biāo);②求拋物線解析式.
(2)若點(diǎn)P為直線AC上方的拋物線上的一點(diǎn),連接PA,PC.求△PAC的面積的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).
(3)拋物線上是否存在點(diǎn)M,過點(diǎn)M作MN垂直x軸于點(diǎn)N,使得以點(diǎn)A、M、N為頂點(diǎn)的三角形與△ABC相似?若存在,直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝廠生產(chǎn)某品牌的T恤衫成本是每件10元。根據(jù)市場調(diào)查,以單價(jià)13元批發(fā)給經(jīng)銷,商銷商愿意經(jīng)銷5000件,并且表示每降價(jià)0.1元,愿意多經(jīng)銷500件。服裝廠決定批發(fā)價(jià)在不低于11.4元的前提下,將批發(fā)價(jià)下降0.1x元.
(1)求銷售量y與x的關(guān)系,并求出x的取值范圍;
(2)不考慮其他因素,請問廠家批發(fā)單價(jià)是多少時(shí)所獲利潤W可以最大?最大利潤為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com