【題目】如圖AB⊙O的直徑,PA⊙O相切于點A,BP⊙O相交于點D,C⊙O上的一點,分別連接CB、CD,∠BCD60°.

(1)求∠ABD的度數(shù);

(2)AB6,求PD的長度.

【答案】(1)∠ABD=30°;(2)PD=

【解析】

(1)根據(jù)圓周角定理得:∠ADB=90°,由同弧所對的圓周角相等和直角三角形的性質(zhì)可得結(jié)論;

(2)如圖1,根據(jù)切線的性質(zhì)可得∠BAP=90°,根據(jù)直角三角形30°角的性質(zhì)可計算AD的長,由勾股定理計算DB的長,由三角函數(shù)可得PB的長,從而得PD的長.

(1)如圖,連接AD.

BA是⊙O直徑,

∴∠BDA=90°.

,

∴∠BAD=C=60°.

∴∠ABD=90°-BAD=90°-60°=30°.

(2)如圖,∵AP是⊙O的切線,

∴∠BAP=90°.

RtBAD中,∵∠ABD=30°,

DA=BA=×6=3.

BD=DA=3

RtBAP中,∵cosABD=,

cos30°=

BP=4

PD=BP-BD=4-3=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則以下結(jié)論同時成立的是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為原點,點A(﹣,0),點B(0,1)把△ABO繞點O順時針旋轉(zhuǎn),得△A'B'O,點A,B旋轉(zhuǎn)后的對應(yīng)點為A',B',記旋轉(zhuǎn)角為α(0°<α<360°).

(1)如圖①,當(dāng)點A′,B,B′共線時,求AA′的長.

(2)如圖②,當(dāng)α=90°,求直線ABAB′的交點C的坐標(biāo);

(3)當(dāng)點A′在直線AB上時,求BB′與OA′的交點D的坐標(biāo)(直接寫出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場有一個可以自由轉(zhuǎn)動的圓形轉(zhuǎn)盤(如圖).規(guī)定:顧客購物100元以上可以獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會,當(dāng)轉(zhuǎn)盤停止時,指針落在哪一個區(qū)域就獲得相應(yīng)的獎品(指針指向兩個扇形的交線時,當(dāng)作指向右邊的扇形).下表是活動進行中的一組統(tǒng)計數(shù)據(jù):

轉(zhuǎn)動轉(zhuǎn)盤的次數(shù)n

100

150

200

500

800

1000

落在鉛筆的次數(shù)m

68

111

136

345

546

701

落在鉛筆的頻率

(結(jié)果保留小數(shù)點后兩位)

0.68

0.74

0.68

0.69

0.68

0.70

1)轉(zhuǎn)動該轉(zhuǎn)盤一次,獲得鉛筆的概率約為_______;(結(jié)果保留小數(shù)點后一位)

2)鉛筆每只0.5元,飲料每瓶3元,經(jīng)統(tǒng)計該商場每天約有4000名顧客參加抽獎活動,請計算該商場每天需要支出的獎品費用;

3)在(2)的條件下,該商場想把每天支出的獎品費用控制在3000元左右,則轉(zhuǎn)盤上“一瓶飲料”區(qū)域的圓心角應(yīng)調(diào)整為______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖所示是一條線段,AB的長為10厘米,MN的長為2厘米,假設(shè)可以隨意在這條線段上取一點,求這個點取在線段MN上的概率.

(2)如圖是一個木制圓盤,圖中兩同心圓,其中大圓直徑為20cm,小圓的直徑為10cm,一只小鳥自由自在地在空中飛行,求小鳥停在小圓內(nèi)(陰影部分)的概率是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=8,AD=12,經(jīng)過A,D兩點的⊙O與邊BC相切于點E,則⊙O的半徑為( 。

A. 4 B. C. 5 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k為常數(shù)).

(1)求證無論k為何值,方程總有兩個不相等實數(shù)根;

(2)已知函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過第三象限,求k的取值范圍;

(3)若原方程的一個根大于3,另一個根小于3,求k的最大整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在二次函數(shù)y=-x2bxc中,函數(shù)y與自變量x的部分對應(yīng)值如下表:

x

……

2

0

3

4

……

y

……

7

m

n

7

……

m、n的大小關(guān)系為( )

A. mn B. mn C. mn D. 無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象經(jīng)過點A(1,3)、B(3,m).

(1)求反比例函數(shù)的解析式及B點的坐標(biāo);

(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案