【題目】如圖所示在平面直角坐標(biāo)系中,方格紙中每個小方格都是邊長為1個單位長度的正方形,已知點,,.

1)在所給的直角坐標(biāo)系中畫出三角形;

2)把三角形向左平移3個單位,再向上平移2個單位得到三角形,畫出三角形并寫出點的坐標(biāo);

3)求三角形的面積.

【答案】1)見解析;(2)見解析,C′0,4);(35.

【解析】

1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C的位置,然后順次連接即可;

2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C向左平移3個單位,再向上平移2個單位后對應(yīng)點A′、B′、C′的位置,然后順次連接即可,再根據(jù)平面直角坐標(biāo)系寫出點C′的坐標(biāo);

3)根據(jù)三角形的面積公式列式計算即可得解.

解:(1ABC如圖所示;

2A′B′C′如圖所示,C′0,4);

3A′B′C′的面積=×5×25

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程:

(1)x2+4x-5=0;(2)x(x-4)=2-8x;(3)x-3=4(x-3)2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,AE平分∠BADCD于點E,AE的垂直平分線交AB于點G,交AE于點F.若AD4cmBG1cm,則AB_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線y=﹣x+2x軸、y軸分別交于AB兩點,直線BCx軸負(fù)半軸于點C,∠BCA30°,如圖①.

1)求直線BC的解析式.

2)在圖①中,過點Ax軸的垂線交直線CB于點D,若動點M從點A出發(fā),沿射線AB方向以每秒個單位長度的速度運動,同時,動點N從點C出發(fā),沿射線CB方向以每秒2個單位長度的速度運動,直線MN與直線AD交于點S,如圖②,設(shè)運動時間為t秒,當(dāng)△DSN≌△BOC時,求t的值.

3)若點M是直線AB在第二象限上的一點,點N、P分別在直線BC、直線AD上,是否存在以M、B、NP為頂點的四邊形是菱形.若存在,請直接寫出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,兩建筑物的水平距離為24 m,從A點測得D點的俯角為60°,測得C點的仰角為40°,求這兩座建筑物的高.(≈1.732,tan 40°≈0.8391,精確到0.01 m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種子商店銷售“黃金一號”玉米種子,為惠民促銷,推出兩種銷售方案供采購者選擇.

方案一:每千克種子價格為4,均不打折;

方案二:購買3千克以內(nèi)(3千克)的價格為每千克5,若一次購買超過3千克,則超出部分的種子打七折.

(1)請分別求出方案一、方案二中購買的種子數(shù)量x(千克)與付款金額y()之間的函數(shù)關(guān)系式;

(2)若你去購買一定量的種子,你會怎樣選擇方案?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究如圖,直線的解析式為,且軸交于點,直線經(jīng)過點和點,直線,交于點,連接

1)求直線的解析式;

2)求證:是等腰三角形;

3)求的面積;

4)探究在直線上是否存在異于點的另一點,使得的面積相等,若存在,請直接寫出點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上點對應(yīng)的數(shù)分別是,為數(shù)軸上兩個動點,它們同時向右運動.從點出發(fā),速度為每秒個單位長度;點從點出發(fā),速度為點倍,點為原點.

1)當(dāng)運動秒時,點對應(yīng)的數(shù)分別是 、 .

2)求運動多少秒時,點中恰有一個點為另外兩個點所連線段的中點?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】袋小麥稱后記錄如下表(單位:),要求每袋小麥的重量控制在。即每袋小麥的重量不高于,不低于.

小麥的袋數(shù)

小麥的重量

1)這袋小麥中,符合要求的有 袋;

2)將符合要求的小麥以為標(biāo)準(zhǔn),超出部分記為正,不足的記為負(fù)數(shù);

3)求符合要求的小麥一共多少千克?

查看答案和解析>>

同步練習(xí)冊答案